数学的逻辑推理篇1
语义Web旨在实现Web上数据之间的链接,为这些数据赋予语义信息,使得计算机能够理解和自动处理。在TimBerners-Lee等给出的语义Web层次模型中,语义Web的实现依赖于以下关键技术:用XML来承载Web页面的内容,使得Web文档含有XML标签所携带的元数据信息;用本体定义XML标签的语义,使得XML标签所携带的元数据信息得到共同的理解;使用智能agent,基于逻辑推理,对Web文档进行自动处理。在这些技术中,本体是实现语义共享并
进而实现逻辑推理和自动处理的关键。
描述逻辑是语义Web的逻辑基础
W3C于2004年2月接受了基于描述逻辑的OWL语言,将其作为Web本体语言的推荐标准。OWL语言由三个描述能力依次增强的子语言组成:OWLLite、OWLDL和OWLFull。其中,在描述能力上,OWLLite和OWLDL分别与描述逻辑SHIF(D)以及SHOIN(D)等价;OWLFull支持与RDF的兼容,但其对应的逻辑是不可判定的。鉴于本体在语义Web中所处的核心地位,描述逻辑也在一定程度上被看作语义Web的逻辑基础。
描述逻辑是一类用于知识表示的形式化工具。描述逻辑的渊源可追溯到上世纪60、70年代对知识表示的研究。当时出现的知识表示方式可大致分为两类:基于逻辑的形式系统和非逻辑的表示系统。基于逻辑的形式系统采用命题逻辑、谓词逻辑等经典逻辑,对客观世界的某些部分进行准确刻画。非逻辑的表示系统则采用语义网络、框架、以及产生式系统等进行知识表示。与一阶逻辑等相比,语义网络和框架显得更加有效和易于使用。但是,语义网络和框架存在一个共同的缺点,即缺乏清晰的语义。在这种背景下,KL-ONE应运而生。
KL-ONE结合了语义网络和框架系统的优点,在提出之后就得到了学术界的广泛关注,并于1980年召开了第一届KL-ONE专题研讨会。该系列的专题研讨会一直延续至今,在依次改名为KL-ONE类专题研讨会、术语包含语言专题研讨会、术语逻辑国际专题研讨会等之后,于1994年正式更名为描述逻辑国际专题研讨会。在这期间,CLASSIC、BACK、LOOM、K-REP等逻辑系统相继涌现,描述逻辑家族的成员逐渐增多,对描述逻辑的研究逐渐成为一个热点。
描述逻辑的主要特征在于具有清晰的模型理论机制,适合于通过概念分类学来表示应用领域知识;此外,其在具有较强表达能力的同时还保持了相关推理问题的可判定性。
扩展的描述逻辑支撑语义Web
经过二十多年的研究,FACT、RACE、DLP、Pellet等经过高度优化的描述逻辑推理机已经被开发出来;描述逻辑也被成功应用到信息系统、数据库、软件工程、自然语言处理、以及网络智能访问等领域。对描述逻辑的研究趋于成熟。
在语义Web出现之后,尤其是在W3C组织将OWL本体语言作为推荐标准之后,关于描述逻辑的研究再次吸引了学术界和工业界的关注。Web具有开放性、动态性、分布性、交互性等特征,使得仅仅依靠描述逻辑难以实现语义Web的远景目标。因此,研究人员面临的一个课题是:如何对描述逻辑进行扩展,或者如何将描述逻辑与其他形式的系统结合起来,从而为语义Web提供充足的逻辑支撑。
中科院计算技术研究所史忠植研究员提出了一种动态描述逻辑,将描述逻辑与动态逻辑以及情景演算中的动作理论有机地结合起来,可以在一个逻辑系统内对基于描述逻辑的静态的知识、关于动作的知识以及具有动态内涵的知识进行统一的描述和推理。动态描述逻辑弥补了描述逻辑在动态性方面的不足,为语义Web提供进一步的逻辑支撑。基于动态描述逻辑,史忠植研究员领导的智能科学实验室进行了一系列深入研究。研制了动态描述逻辑推理机,为动态描述逻辑所刻画的知识提供有效的推理服务,能够在开放的Web环境下进行推理,并且与OWLDL本体语言兼容。同时,动态描述逻辑推理机被嵌入到知识管理系统KMSphere,实现了从知识的描述和编辑,到对知识的推理、管理、以及应用等全方面的有效支持。此外,描述逻辑推理机还被应用到语义Web服务SWSBroker,为语义Web上Web服务的自动发现和组合提供支持。
数学的逻辑推理篇2
关键词:结构主义;现代逻辑学;结构;关系
关于数学与逻辑的关系问题,费雷格学派主张:“数学是逻辑学的一个分支”;布尔学派则认为:“逻辑学是数学的一个分支”[1]220。不争的事实则是:逻辑学与数学不能相互剥离,它们“血脉相连”、“生命相依”,二者“你中有我,我中有你”[1]220。从逻辑学和数学双重视域来看,形式化的现代逻辑学可以说是应用数学的一个分支,其高度抽象性和形式化特征决定了它像数学一样具有广泛的应用性。现代逻辑学的蓬勃发展,离不开对逻辑进行哲学反思。
逻辑哲学就是对逻辑进行哲学反思的科学。而数学哲学是数学的基础,“是研究数学的本体论、认识论和方法论以及其他问题的知识体系”,数学哲学研究的问题最后都会涉及到数学与逻辑的关系[2]15。虽然逻辑哲学与数学哲学在研究的论题、研究的视角、研究的侧重点和研究方式等方面都有所不同,但是由于逻辑(尤其是形式化的现代逻辑学)与数学具有如下共同特征:纯形式化特征、高度抽象性、极端精确性和严格性、广泛的应用性[2]15-16。这些共同特征以及数学和逻辑学常常具有一批共同或类似的课题,决定了逻辑哲学和数学哲学具有非常密切的关系。因此,从某种意义上说,对逻辑的哲学思考,很大程度上就是对数学的哲学思考。就像逻辑学与数学不能相互剥离一样,逻辑哲学和数学哲学其实也是很难剥离开来的。
20世纪以来,结构主义在数学哲学中占据着主导地位,那么结构主义是否在逻辑学中也有所反映呢?这正是本文要探讨的问题。
一结构主义的四大学派及其基本观点
19世纪,在微积分的算术化和集合论的建立基础上,逐步形成了数学基础的三大学派——逻辑主义、形式主义和直觉主义。逻辑实证主义者主张哲学唯一合法的研究领域是逻辑学,数学哲学则是研究数学语言的逻辑句法学和逻辑语义学[3]9。
20世纪初,哥德尔提出的不完全性定理说明,逻辑分析以存在建构自身作为参照,不然则会陷入无穷回归;而逻辑分析则是在集合论语言的基础上建构数学存在,这些观点蕴含了结构主义的思想[3]9。20世纪60年代,奎因认为,约束逻辑变元的取值其实就是存在,哲学本体论可以通过语言加以研究,利用语言可以研究存在,结构主义因而进行了数学哲学的范式转换。关系与其所依附的所有个体共同组成结构。根据结构所依附的个体的不同类型来看,数学结构主义主要包括四大学派:集合论结构主义[4]184-211[5]、先物(anterem)结构主义[4]188-198、范畴论结构主义[6][7]、模态结构主义[8]。
集合论结构主义使用模型论中熟知的方式,来描述数学结构及其相互关系。模态结构主义,不是通过对结构或位置进行字面上的量化,而是通过借助于适当的关系和定义域的(二阶)逻辑可能性,来满足经典公理系统的隐含定义条件[4]185。先物结构主义则主张:利用结构中的位置可以定义数学对象,数学对象的指称则要求结构与能够例示它们的任何系统是相互独立[9];数学公式能够由相干公式来描述,而且这些相干公式能够由实际存在的先物结构来满足[10]。范畴论结构主义本质上是通过一系列结构保持映射,为数学结构提供系统概念,从而为数学作出哲学解释[7]。夏皮诺(Shapiro)认为,虽然这些学派有着明显的区别,但是,不论是从主流数学的目的来看,还是从某种更深层次的哲学意义来看,这几大学派其实是等价的。例如:处理哲学问题的一种方法与处理这种问题的其他方法,具有关联性,这种关联性可以通过系统间的自然转换来表达[4]184。这些学派通过语言的途径,把数学哲学引向了对意义和真理的探讨以及对数学对象的存在建构[3]10。
结构主义对数学存在的语言建构是建立在逻辑主义、形式主义和直觉主义这三大学派的研究基础之上的。这三大学派认为:结构主义可以利用语言框架来建构数学对象,这一点在模态结构主义和集合论结构主义中表现得尤为明显,这使得结构主义的本体论建构与作为数学基础的逻辑研究之间能够建立起密切的关系,从而为逻辑学与本体论之间搭建了沟通的桥梁[3]12。范畴论结构主义挣脱了逻辑语言的束缚,创立了崭新的本体论语言,在把语言纳入存在的内涵的同时,还把存在上升到了语言的境界,并通过集合论与逻辑语言保持紧密的联系,从而使得存在建构能够像逻辑建构那样成为严密的科学[3]13。
二现代逻辑学具有结构主义特征
形式主义是20世纪上半叶出现的一种数学哲学思潮,它是极端唯名论在数学中的具体体现。而形式化则是现代逻辑学最重要的研究方法。形式化过程一般包括:进行预备性研究、构造形式系统并对其进行解释、关于形式系统的元逻辑研究这几大步骤[2]124-130。具体地说,对现实世界进行模拟的现代逻辑学形式系统,一般都遵循这样的研究思路:首先,根据研究对象给出一个没有歧义的形式语言,目的是规定哪些符号串是所研究的形式系统的合式公式;其次,给出这一形式语言的语义解释,这需要利用赋值给出合式公式有效性定义;然后,给出这一形式系统的公理和推理规则;再次,根据这一形式系统的语言、语义、公理和推理规则,寻找相关定理;最后,研究系统的可靠性、完全性、可判定性和复杂性等等。
哲学本体论是研究隐藏在真实世界背后存在的最高本质,即对本体、属性和关系进行哲学思考。因此,现代逻辑学本体论的现实原型就是现实世界的本体、属性和关系。从科学哲学的视角看,不论是计算机科学、应用数学,还是逻辑学,一般都遵循着相同的研究思想——结构主义的研究思想:重要的不是个体对象、集合,而是所研究对象的结构以及结构之间的关系。正如高斯所说:“数学是关于关系的科学,从关系中可以抽象出任何概念。”彭加勒也认为,“数学家不是研究对象,而是研究对象之间的关系”[11]1-34。计算科学的基本特征就是研究对象的构造性的数学特征,并利用定义和解释,在对现实中的对象进行抽象和模型化的基础上,给出相关定理的证明[12]89。
从19世纪末以来发展起来的数理逻辑、模态逻辑、动态逻辑(包括命题动态逻辑、量化动态逻辑)、认知逻辑、广义量词理论、类型逻辑语法、范畴类型逻辑等逻辑分支,都或明或暗地采用了结构主义的方法,即对象的结构化的总体特征常常靠利用公理化方法、对象间的映射与同构来加以研究。从20世纪以来,作为数学哲学的结构主义,就已经成为研究逻辑学的主导方法,在模态逻辑、命题动态逻辑、广义量词理论和范畴类型逻辑中表现得尤为突出。从总体上看,结构主义的特征在逻辑学一直或隐或显地存在着,正是这一结构主义特征激发了逻辑学界、科学哲学界等对结构主义进行深入研究的兴趣。
笔者认为:不论数学结构主义有多少种学派,也不论各学派之间有何分歧,逻辑学,尤其是形式化的现代逻辑学,几乎都或隐或显地采用了结构主义的研究方法。也就是说,形式化的现代逻辑学主要是描述各自论域中的各种研究对象的结构性特征及其相互关系,而不必考虑具体对象的内在的品质,不同的逻辑对象可以由其相应结构的性质或结构之间的基本关系来表示。
比如:模态逻辑充分考虑了含有“可能”和“必然”的模态语句的这一命题结构,引入了“可能”和(或)“必然”模态词,对传统的一阶逻辑进行扩展而得到的。因为预设的公理和推理规则不同,而得到的模态系统也不同,对这些模态系统的框架进行解释就可以得到不同的模型。认知逻辑则是模态逻辑的改版,即:把模态逻辑中的必然算子,解释成相信算子或知道算子等而得到的。虽然各个逻辑系统千差万别,但是,各个系统所给出的句法和语义,以及随之而定义的框架与模型和在此基础上对可靠性和完全性、可判定以及复杂性的探讨等等,都或隐或显地彰显了结构主义的特征。
由于很多数学都研究抽象的结构,因此,数学结构主义在数学哲学中占据着主导的地位。根据数学结构主义的观点,数学理论描述各自论域中的结构的性质,而不必考虑所讨论对象的内在品质[13]。狄德金主张把数学结构作为以集合、运算和关系的系统的基础,并认为同构概念与结构的类型紧密相关[3]10。为了准确清晰地表述“结构”或“结构映射”的概念,数学只有利用集合论,或者只有利用作为结合论的一个分支的模型论,才能够准确表征结构、结构映射等概念。因此,集合论就成为结构主义重建数学的语言基础,成为结构主义表述各种数学对象及其相互关系的基本语言。作为现代逻辑学的重要分支之一的广义量词理论,集合论语言是其基本语言,因此,广义量词理论也采用了结构主义的研究方法。下面,笔者将以广义量词理论为例,来考察结构主义在现代逻辑学中的具体体现。
三结构主义在现代逻辑学中的具体实例
广义量词理论是揭示广义量词的普遍语义性质和推理特征的自然语言逻辑理论。集合论视域下的广义量词是通过对自然语言中的名词短语或其限定词进行语义解释后而得到的。即:广义量词对应于所有名词短语或其限定词的指称。一阶逻辑的全称量词和存在量词也是广义量词。可见,广义量词理论是在一阶逻辑和集合论的基础上发展起来的,它对广义量词的真值定义是建立在标准模型论的基础之上,广义量词的量化论域是由个体组成的集合,真值的模型论概念则是利用非逻辑符号的解释和量化论域来加以表述的[14]40-41。广义量词理论以集合论语言作为其基本语言,而集合论语言是结构主义表述各种数学对象及其相互关系的基本语言,因此,广义量词理论在诸多方面都体现了数学结构主义的思想。
(一)广义量词的同构闭包性彰显了结构主义的思想
1957年,莫斯托维斯基(Mostowski)为〈1〉类型广义量词附加了这样条件:不允许我们对论域中的元素加以区分。1966年,林登斯托姆(Lindstr?m)把这一条件推广到更为普遍的情况,而且这一条件得到了逻辑学家的公认。这一条件被称为同构闭包(isomorphismclosure),即:在逻辑中,只有结构才是重要的,个体对象、集合本身并不重要。这一思想与数学哲学中的结构主义思想不谋而合。用逻辑的术语来表述同构闭包的思想就是:如果一个逻辑语言中的语句在一个模型中为真,那么该语句在所有的同构模型中为真。即:逻辑是主题中立的[14]95。如果逻辑是独立于主题事物,那么逻辑常元将在论域间的任意双射下都是不变的,或者更弱一点地说,逻辑常元在论域的任意置换下是不变的[14]324-325。比如:假设把“学生”一一映射成“狗狗”,把“面包”一一映射成“骨头”,把“在吃”一一映射成“在啃”,那么,如果“每个学生最少吃三块面包”在一个模型中为真,那么“每个狗狗最少啃三块骨头”肯定在其同构模型中也为真。这说明,“每个”和“最少三(块)”具有同构闭包性。可见,逻辑学对所有对象都同等对待,逻辑性质不但在严格变换下是不变的,而且在所有双射下也是不变的[14]325。
同构闭包不仅仅局限于量词。比如,命题联结词也不关注主题事物:合取词可以统一运用于两个语句或两个集合或两个别的对象,而不考虑这两个对象的具体内容,仅仅考虑这两个对象的结构。这说明,同构闭包表达的思想与结构主义的思想也是相通的。对于自然语言量化而言,同构闭包具有重要的意义。莫斯托维斯、林登斯托姆、塔斯基和范本特姆都认为,满足同构闭包性是满足逻辑性的必要条件[14]327-328。值得我们注意的是,逻辑学家和计算机科学家,在实践中提出的所有形式语言都具有这样的性质:真在同构下得以保持,在系统中使用的所有算子以及由这些算子定义的别的所有算子,都满足同构闭包性[14]328。
(二)广义量词的真值定义体现了结构主义的思想
从语法的视角看,一个广义量词是一个变元约束算子,此算子把每个定义域与其任意子集间的一个二元关系联系起来。从语义的视角看,一个广义量词是一个映射,此映射通过表征广义量词的论元集合的性质或论元集合之间的关系,来揭示广义量词的语义性质[15]。例如:每个亚氏量词(即:all、some、no、notall这四个特殊的广义量词)实际上表示的是个体的集合之间的一个特殊的二元关系。比如:在“所有学生都去操场了”中,令论域中所有学生组成的集合用S表示,论域中所有去操场的个体组成的集合用P表示,这一语句就可以表示为all(S,P)这一三分结构,其真值定义all(S,P)?S?P的意思是,集合S是包含在集合P中,即:论域中,所有学生组成的集合包含在所有去操场的个体组成的集合中。
从以上的分析可以看出,广义量词理论很好地诠释了数学结构主义的内涵。比如:all(S,P)这一三分结构还可以表示“所有的人都是要死的”、“所有的狗狗都要睡觉”、“所有的大米都吃完了”等等,这里的“学生”“人”、“狗狗”“大米”等对象所组成的集合S,以及这些对象分别与“去操场了”、“要死的”、“要睡觉”和“吃完了”等对象所组成的集合P,这些具体对象本身并不重要,重要的是这些语句都可以用all(S,P)这一三分结构来加以统摄。其真值条件就是,当S?P(即S包含于P时)时,all(S,P)就为真。
(三)广义量词理论对单调性的处理也展示了结构主义的思想
广义量词的单调性是广义量词最为重要的语义性质。例如:至少三分之二的学生认真完成了作业。?至少三分之二的学生完成了作业。令S表示论域中所有学生组成的集合,P表示论域中认真完成作业的个体组成的集合,P′表示论域中完成作业的个体组成的集合。“至少三分之二的学生认真完成了作业”可表示成atleast2/3(S,P)这样的三分结构,“至少三分之二的学生完成了作业”可表示成atleast2/3(S,P)这样的三分结构。这一单调性推理可形式化为atleast2/3(S,P)?atleast2/3(S,P′),由于P?P′,由P到P′,集合在增大,因此,这一推理体现了“至少三分之二的”这一广义量词的右单调递增的性质。而P?P′可以理解为,所有的P都是P′,这可表示成all(P,P′)。具体地说,就是:所有认真完成了作业的个体都是完成了作业的个体。这一单调性推理其实是省略了all(P,P′)这一前提的广义三段论推理,其形式化结构为:atleast2/3(S,P)∧all(P,P′)?atleast2/3(S,P′)。事实上,所有关于广义量词的单调性推理,都是省略了一个暗含前提的广义三段论推理。
可见,广义量词理论对单调性的处理所使用的基本语言也是集合论语言,这一语言也是结构主义的基本语言,因而体现了结构主义的思想。1984年范本特姆提出的利用数字三角形方法,来表征具有驻留性、扩展性和同构闭包性的〈1〉类型和〈1,1〉类型广义量词的单调性,其背后也暗含了浓烈的结构主义思想。限于篇幅,不再详细论述。
(四)基于广义量词理论的广义三段论推理蕴涵了结构主义的思想
正如一阶逻辑的全称量词和存在量词是广义量词的特例一样,亚氏三段论也是广义三段论的特例。自亚里士多德开始的很长时期内,对亚氏三段论的有效性的研究,几乎都是采用的是非形式化的方法。自从有了广义量词理论后,对包括亚氏三段论在内的广义三段论的研究,就可以用形式化的方法来对其进行表示和有效性的证明[1]155-202。而且利用广义量词理论,不仅可以对24个有效的亚氏三段论进行形式化,而且还可以对其进行公理化[16]。这种形式化的逻辑研究方法不仅拓展了逻辑研究的范围、提升了逻辑学的研究能力,更重要的是有利于计算机科学中的知识表示、知识推理和自然语言信息处理。
广义量词理论完成以上这些任务主要还是利用了集合论语言,彰显了结构主义的思想。具体地说,就是充分利用了“含有〈1,1〉类型的广义量词Q的量化语句具有Q(S,P)这样的三分结构”这一知识。〈1,1〉类型的广义量词揭示的是所涉及的左论元所组成的集合与其右论元所组成的集合之间的二元关系。〈1〉类型的广义量词揭示的是所涉及的论元所组成的集合的性质。由于自然语言中的广义量词绝大多数都是〈1〉类型和〈1,1〉类型的广义量词,而且对〈1〉类型的广义量词的研究可以转化为对其〈1,1〉类型的亲缘广义量词的研究[1]46。因此,利用这一结构主义思想,就可以对自然语言中绝大部分广义三段论进行形式化和有效性的证明。简言之,这一结构主义的研究方法具有很强普适性。
例如:“所有渴望暴富的人都是浮躁之人。大多数人都是渴望暴富的人。所以,大多数人都是浮躁之人。”其中的“大多数的”对应的是〈1,1〉类型的广义量词。令论域中所有人组成的集合用S表示,论域中浮躁之人组成的集合用P表示,论域中渴望暴富的人组成的集合用M表示。利用结构主义的形式化表示方法,这一广义三段论,可以形式化为:all(M,P)∧most(S,M)?most(S,P)。利用广义量词的真值定义就可证明这一广义三段论的有效性。证明:假设all(M,P)与most(S,M)这两个条件均成立。根据all和most的真值定义可知:all(M,P)?M?P,且most(S,M)?|S∩M|≥|0.55|S|,因此,|S∩P|≥0.55|S|。再根据most的真值定义“most(S,P)?|S∩P|≥0.55|S|”可知:most(S,P)成立。证毕。对亚氏三段论和其他广义三段论的形式化及其有效性的证明均可以类似处理。可见,利用结构主义的形式化研究方法,可以简洁明了地对包括亚氏三段论在内的广义三段论进行形式化及其有效性的证明。
笔者多年的研究表明:这一结构主义研究方法普适性非常强。因为不论是自然语言中无处不在的广义量词的单调性推理,还是亚氏三段论推理,抑或是广义三段论推理,以及建基于这三种推理之上的语篇推理,都可以使用这种结构主义的研究方法来进行形式化及其有效性的证明。
四结论
数学的逻辑推理篇3
关键词:初中数学;学生推理能力;研究
受到传统应试教育思想的桎梏及束缚,不少数学教育工作者倾向于单纯地向学生灌输数学概念、数学公式等具体知识点,也习惯了仅仅把注意力集中放在提高学生的计算能力以及考试成绩之上。其实,这是一种片面而又极端的错误做法。
《义务教育数学课程标准》提倡“着重发展学生的逻辑思维能力与合理推理能力”,要求数学教育工作者“彻底摒弃落后的教育理念,多渠道、多措施地对学生的数学逻辑推理能力进行培养与发展”。由此我们不难看出,培养初中学生具备严谨的思维、形成良好的推理能力既是推进素质教育改革的重要手段,更是保证学生提高自身综合素质、为日后长远发展奠定良好基础的必要途径。以下,笔者仅结合自身的教学实践感悟,试就初中学生数学推理能力的发展之道进行初步的分析与研究。
一、培养初中学生的逻辑推理能力,激发其数学学习兴趣乃是首要前提
教育心理学研究表明,当一个人对某件事物有着浓厚的学习兴趣时,他会自然而然地对其产生强烈而明确的学习欲望及动机,并积极、主动且自觉地去克服学习过程中遇到的困难与挑战,最终收获良好的学习效果与目标。
因此,我个人认为,要想真正培养初中生形成良好的逻辑推理能力,激发其对所学数学内容的学习兴趣乃是首要前提。因为只有这样,才能充分集中学生的全部注意力以及学习思维,促使他们在自身原有知识经验的基础之上,最大限度地发挥自身的主观能动性,促使他们实现思维体系的主动构建与生成,并从主动探索、主动发现、主动获取新知识的过程中实现逻辑思维能力的培养与发展。
以我自身为例,我在日常的数学教学过程中就格外注重学生数学学习兴趣的激发与调动,力求以此为契机,培养他们自觉提高数学逻辑思维与推理的能力。例如,有一次数学课上,我向学生讲到“自然数和0都是整数”,这时,底下有位学生小声嘀咕道“也就是说整数就是自然数和0呗”。很明显,这个学生的思路是错误的,但是我却抓住其逻辑中的小错误进行反击“按你刚才的逻辑推理,我们能从‘猫有四只脚’里推断出‘有四只脚的都是猫’吗?”学生哄堂大笑,显然他们也明白了这种逻辑的错误性。如此,虽然没有正面向学生灌输逻辑思维、合理推理等的必要性及重要意义,但从侧面巧妙地向他们点明了这一点。如此,不但有利于调动学生对这部分知识的学习兴趣以及积极性,有益于帮助他们及时纠正这一常犯的数学逻辑错误,而且更为关键的一点在于对他们的逻辑思维与推理能力进行了一定程度的培养与发展,为他们日后数学过程中更好地提升自身的逻辑推理水平奠定了良好的
基础。
二、培养初中学生的逻辑推理能力,进行类比教学至为关键
教学实践表明,在数学教学中将相似的概念、相近或者相对的内容以及容易混淆的定义、规律等通过对比、分析的方法将其进行重新梳理与归纳,不仅使学生的数学知识体系更具系统化与规范化的特征,而且也有利于他们在进行类比与整理的过程中实现对具体知识点的更好认识、理解与灵活掌握,有益于他们在这一过程中着重发展自身的分析与归纳能力,而这一点对于他们自身良好逻辑推理能力的形成与逐渐发展无疑将起到积极的促进作用。
如,在教学“因式分解”这一数学知识点时,我就引导学生认真回忆“整式乘法”的数学定义与具体表现形式,并以此为基础,向他们讲解“因式分解”这一数学概念。通过两者在数学定义以及具体表现形式的不同,学生很容易就能明白这两种数学运算本质上的不同:
(a+b)(a-b)=a2-b2这是整式乘法;a2-b2=(a+b)(a-b)则是因式分解,两者恒等变形却又互为相逆的整式运算。
再比如,轴对称图形、旋转对称图形、中心对称图形这几个都是对称图形,意义虽不尽相同,却也仅仅只是有着细微的差别。若是学生稍微马虎、粗心一点,很容易就将这几个概念搞混淆。鉴于这种情况,在讲解完这三种数学图形的具体知识点之后,我又鼓励学生以小组为单位,通过类比与分析的方式明确这三种对称图形在本质上的区别。如此一来,既大大锻炼了学生的逻辑思维与推理能力,有利于他们自主发现这三者的具体不同之处;二来通过他们的科学推理活动又促使他们真正加深了对上述数学概念的认识与理解,起到了一举多得的良好的教学效果。
受到年龄因素的制约,初中阶段学生的逻辑推理能力普遍尚未真正发展成熟,这就需要我们数学教育工作者有意识、有目的地加强对其的训练与培养,从而大大提高他们的逻辑推理能力,以便为他们日后形成严密的逻辑思维、具备良好的科学推理能力奠定良好的基础。
参考文献:
[1]王敬娜.初中数学教学中学生合情推理能力的培养[J].数学学习与研究,2013(06).
数学的逻辑推理篇4
【关键词】逻辑/范围与性质/广义与狭义/一元论/多元论/工具主义
【正文】
一、广义的逻辑与狭义的逻辑
什么是逻辑?要清楚明确地回答这一问题,要将各种各样冠以“逻辑”的学科都统一在一个明确清晰的“逻辑”的定义之下,这是很困难的,甚至是不可能的。
不妨先对逻辑发展史作一简单考察。
在西方,公元前4世纪,古希腊哲学家亚里士多德集其前人研究之大成,写成了逻辑巨著《工具论》(由亚氏的六部著作编排而成:《范畴篇》、《解释篇》、《前分析篇》、《后分析篇》、《论辩篇》、《辨谬篇》)。虽然在亚氏的著作中他并没有明确地使用“逻辑”这一名称,也没有明确地以“逻辑”这一术语命名其学说,但是,历史事实是,亚氏使形式逻辑从哲学、认识论中分化出来,形成了一门以推理为中心,特别是以三段论为中心的独立的科学。因此,可以说,亚里士多德是形式逻辑的创始人。
亚氏之后,亚里士多德学派即逍遥学派和斯多葛学派都以不同形式发展了亚氏的形式逻辑理论——逍遥学派的德奥弗拉斯特和欧德慕给亚里士多德逻辑的推理形式增补了一些新的形式与内容,提出了命题逻辑问题,斯多葛学派克里西普斯等人则构造了一个与亚里士多德词项逻辑不同的命题逻辑理论。
弗兰西斯·培根是英国近代唯物主义哲学家,也是近代归纳逻辑的创始人,他在总结前人归纳法的基础上,在批判了经院逻辑和亚里士多德逻辑之后,以其古典归纳逻辑名著《新工具》为标志,奠定了归纳逻辑的基础。
18-19世纪,德国古典哲学家康德、黑格尔等,对人类思维的辩证运动与发展进行了深入研究,建立了另一种新的思辩逻辑——辩证逻辑。
与此同时,以亚里士多德逻辑为基础的形式逻辑在发展与变化中也进入了新的阶段——数理逻辑阶段。数理逻辑也称符号逻辑,或谓狭义的现代逻辑,奠基人是德国哲学家、数学家莱布尼兹。他主张建立“表意的、普遍的语言”来研究思维问题,使推理的有效性可以用数学方法来进行。莱布尼兹的这些设想虽然在许多方面并未实现,但他提出的“把逻辑加以数学化”的伟大构想,对逻辑学发展的贡献却是意义深远的,正如逻辑史家肖尔兹所说,“人们提起莱布尼兹的名字就好象在谈到日出一样。他使亚里士多德逻辑开始了‘新生’,这种新生的逻辑在今天的最完美的表现就是采作逻辑斯蒂形式的现代精确逻辑。”(注:肖尔兹著,张家龙译:《简明逻辑史》,商务印书馆1997年版,第50页。)莱氏之后,经过英国数学家、哲学家、逻辑学家哈米尔顿、德摩根的研究,英国数学家布尔于1847年建立了逻辑代数,这是第一个成功的数理逻辑系统。1879年,德国数学家、逻辑学家弗雷格在《概念文字——一种模仿算术语言构造的纯思维的形式语言》这部88页的著作中发表了历史上第一个初步自足的、包括命题演算在内的谓词演算公理系统,从而创建了现代数理逻辑。之后,英国哲学家、逻辑学家罗素和怀特海于1910年发表了三大卷的《数学原理》,建立了带等词的一阶谓词系统,从而使得数理逻辑成熟与发展起来。
上述数理逻辑,以两个演算——命题演算与谓词演算作为核心,被称之为现代形式逻辑或狭义的现代逻辑。在当代,以现代逻辑为基础,将现代逻辑应用于各个领域、各个学科,从而出现了广义的各种各样的现代逻辑分支。
从以上对古代、近代、现当代逻辑学说发展的简单考察可以看出,逻辑的范围是十分广泛的。它至少包括了以亚里士多德逻辑为基础的传统演绎逻辑、以数理逻辑为核心及基础的现代逻辑及其分支、归纳逻辑、辩证逻辑等等,而这些逻辑相互之间的特性又是十分不同甚至十分对立的。所以,要用一个明确的定义把这些历史上所谓的逻辑都包含进去,确实是很难的。事实上,“逻辑”一词是可以有不同的涵义的,逻辑可以有广义与狭义之分。
英国逻辑学家哈克在谈到逻辑的范围时,认为逻辑是一个十分庞大的学科群,其分支主要包括如下:
1.传统逻辑:亚里士多德的三段论
2.经典逻辑:二值的命题演算与谓词演算
3.扩展的逻辑:模态逻辑、时态逻辑、道义逻辑、认识论逻辑、优选逻辑、命令句逻辑、问题逻辑
4.异常的逻辑:多值逻辑、直觉主义逻辑、量子逻辑、自由逻辑
5.归纳逻辑(注:S.Haack:Philosophyoflogics,CambridgeUniversityPress,1978,P.4,221-231.)
在这里,哈克所谓的“扩展的逻辑”,是指在经典的命题演算与谓词演算中增加一些相应的公理、规则及其新的逻辑算子,使其形式系统扩展到一些原为非形式的推演,由此而形成的不同于经典逻辑的现代逻辑分支;至于“异常的逻辑”,则是指其形成过程一方面使用与经典逻辑相同的词汇,但另一方面,这些系统又对经典逻辑的公理与规则进行了限制甚至根本性的修改,从而使之脱离了经典逻辑的轨道的那些现代逻辑分支。“扩展的逻辑”与“异常的逻辑”统称为“非经典逻辑”。
以哈克的上述分类为基础,从逻辑学发展的历史与现实来看,逻辑是有不同的涵义的,因此,逻辑的范围是有宽有窄的:首先,逻辑指经典逻辑,即二值的命题演算与谓词演算,不严格地,也可以叫数理逻辑,这是最“标准”、最“正统”的逻辑,也是最狭义的逻辑;其次,逻辑还包括现代非经典逻辑,不严格地,也可以叫哲学逻辑,即哈克所讲的扩展的逻辑与异常的逻辑;再次,逻辑还包括传统演绎逻辑,它是以亚里士多德逻辑为基础的关于非模态的直言命题及其演绎推理的直观理论,其主要内容一般包括词项(概念)、命题、推理、证明特别是三段论等。此外,逻辑还可以包括归纳逻辑(包括现代归纳逻辑与传统归纳法)、辩证逻辑。将逻辑局限于经典逻辑、非经典逻辑,这就是狭义的逻辑,而将逻辑包括传统逻辑、归纳逻辑与辩证逻辑,则是广义的逻辑。以这一取向为标准,狭义的逻辑基本上可以对应于“逻辑是研究推理有效性的科学,即如何将有效的推理形式从无效的推理形式中区分开来的科学”这一定义,而广义的逻辑则可以基本上对应于“逻辑是研究思维形式、逻辑基本规律及简单的逻辑方法的科学”这一定义。
由此可见,逻辑学的发展是多层面的,站在不同的角度,就可以从不同的方面
来考察逻辑学的不同层面及不同涵义:
(1)从现代逻辑的视野看,逻辑学的发展从古到今的过程是从传统逻辑到经典逻辑再到非经典逻辑的过程。这一点上面已有论述,此不多说。
(2)从逻辑学兼具理论科学与应用科学的角度,可以确切地把逻辑分成纯逻辑与应用逻辑两大层面。可以说,纯逻辑制定出一系列完全抽象的机械性装置(例如公理与推导规则),它们只展示推理论证的结构而不与某一具体领域或学科挂钩,是“通论”性的,而应用逻辑则是将纯逻辑理论应用于某一领域或某一主题,从而将这一具体主题与纯逻辑理论相结合而形成的特定的逻辑系统,它相当于逻辑的某一“分论”。在纯逻辑这一层面,还可以分成理论逻辑与元逻辑,所谓元逻辑,是以逻辑本身为研究对象的元理论,是刻划、研究逻辑系统形式面貌与形式性质的逻辑学科,它研究诸如逻辑系统的一致性、可满足性、完全性等等。不言而喻,元逻辑之外的纯逻辑部分,统称为理论逻辑。以这种分法为基础,如果说纯逻辑是狭义的逻辑的话,则应用逻辑就是广义的逻辑。
(3)从逻辑学对表达式意义的不同研究层次,可以把逻辑分成外延逻辑、内涵逻辑与语言逻辑。传统逻辑与经典逻辑对语言表达式(词或句子)意义的研究基本上停留在表达式的外延上,认为表达式的外延就是其意义(如认为词的意义就是其所指,句子的意义就是其真值),因此,它们是外延逻辑。对表达式意义的研究不只是停留在其外延上,认为不仅要研究表达式的外延,也要研究表达式的内涵,这样的逻辑就是内涵逻辑。可以看出,外延逻辑与内涵逻辑对表达式意义的研究都只是停留在语形或语义层面,而实际上,表达式总是在具体的语言环境下使用的,因此,逻辑对语言表达式意义的研究还可以也应该深入到语言表达式的具体的使用中去,对其进行语用研究,这一考虑,就促成了所谓的自然语言逻辑或语言逻辑的研究。所谓自然语言逻辑,按我的理解,就是通过对自然语言的语形、语义与语用分析来研究自然语言中的推理的科学。因此,如果说狭义的逻辑是一种语形或语义逻辑、它们只研究语形或语义推理的话,则广义的逻辑则是一种语用逻辑,它还要研究语用推理。
二、现代逻辑背景下的逻辑一元论、多元论与工具论
从上面的论述可以看出,在当代,现代逻辑的发展呈现出多层次、全方位发展的态势,逻辑学正在从单一学科逐步形成为由既相对独立又有内在联系的诸多学科组成的科学体系的逻辑科学。现代逻辑发展的这一趋势,就使得一方面大量的、各种各样的现代逻辑分支、各种各样的逻辑系统不断涌现,比如,既有作为经典逻辑的命题演算与谓词演算,也有作为对经典逻辑的扩展或背离的非经典逻辑。另一方面,不同于传统逻辑或经典逻辑所具有的直观性,非经典逻辑系统越来越远离直观甚至在某些意义上与直观相背。在这种背景下,逻辑学家就必然面临如下需要回答的问题:
(1)逻辑系统有无正确与不正确之分?说一个逻辑系统是正确的或不正确的是什么意思?
(2)是否一定要期望一个逻辑系统成为总体应用的即可以应用于代表任何主题的推理的?或者说,逻辑可以是局部地正确,即在一个特定的讨论区域内正确的吗?
(3)经典逻辑与非经典逻辑特别是其中的异常逻辑之间的关系如何?它们是否是相互对立的?
对上述问题的不同回答,就区分出了关于逻辑的一元论、多元论与工具主义。
不管是一元论还是多元论,都认为逻辑系统有正确与不正确之分,逻辑系统的正确与否依赖于“相对于系统本身的有效性或逻辑真理”与“系统外的有效性或逻辑真理”是否一致。如果某一逻辑系统中的有效的形式论证与那些在系统外的意义上有效的非形式论证相一致,并且那些在某一系统中逻辑地真的合式公式与那些在系统外的意义上也逻辑地真的陈述相一致,则该逻辑系统就是正确的,反之则为不正确的。以这一认识为基础,一元论认为只有一个唯一地在此意义下正确的逻辑系统,而多元论则认为存在多个如此的逻辑系统。
工具主义则认为,谈论一个逻辑系统是否正确或不正确是没有意义的,不存在所谓正确或不正确的逻辑系统,“正确的”这个词是不合适的。就工具主义来说,他们只允许这样一个“内部”问题:一个逻辑系统是否是“完善的”(Sound)?即是说,逻辑系统的定理或语法地有效的论证是否全部地并且唯一地是在该系统内逻辑地真或有效的?(注:S.Haack:Philosophyoflogics,CambridgeUniversityPress,1978,P.4,221-231.)
多元论又可以分为总体多元论与局部多元论。局部多元论认为,不同的逻辑系统是由于应用于讨论的不同领域而形成的,因此,局部多元论把系统外的有效性和逻辑真理从而也把逻辑系统的正确性看作是讨论的一个特定领域,认为一个论证并不是无条件地有效的,而是在讨论中有效的,所以,逻辑可以是局部地正确的,即在某一特定的讨论区域内正确的。而总体多元论则持有与一元论相同的假定:逻辑原理可以应用于任何主题,因此,一个逻辑系统应该是总体应用的即可以应用于代表任何主题的推理的。
就经典逻辑与非经典逻辑特别是异常逻辑之间的关系而言,一元论者强迫人们在经典系统与异常系统中二者择一,而多元论者则认为经典逻辑与扩展的逻辑都是正确的。因此,一元论者断言经典逻辑与异常逻辑在是否正确地代表了系统外的有效论证或逻辑真理的形式上是相互对立的,而多元论者则认为经典逻辑与异常逻辑两者在某一或其他途径下的对立只是表面的。
就逻辑科学发展的现实而言,从传统逻辑到经典逻辑再到非经典逻辑的道路,也是逻辑科学特别是逻辑系统发展由比较单一走向丰富多样的过程。以传统逻辑来说,它来自于人们的日常思维和推理的实际,可以说是对人们的日常思维特别是推理活动的概括和总结,因此,传统逻辑的内容是比较直观的,与现实也是比较吻合的。而经典逻辑是传统逻辑的现展阶段,是以形式化的方法对传统逻辑理论特别是推理理论的新的研究,因此,与传统逻辑一样,经典逻辑的内容仍是具有直观基础的——经典逻辑的公理与定理大都可以在日常思维中找到相对应的思维与推理的实例予以佐证,人们对它们的理解与解释也不会感到与日常思维特别是推理的实际过于异常。所以,在传统逻辑与经典逻辑的层面,用“系统内的有效性”与“系统外的有效性”的一致来说明一个逻辑系统的正确性是合适的,这种说明的实质就是要求逻辑系统这种“主观”的产物
与思维的客观实际相一致。
相对而言,在经典逻辑基础上发展起来的各种非经典逻辑,它的直观性、与人们日常思维特别是推理的吻合性就大大不如经典逻辑,甚至与经典逻辑背道而驰。以模态命题系统为例(应该说,相对而言,模态命题逻辑在非经典逻辑中是较为直观的),如果说系统T满足对模态逻辑系统的直观要求,它所断定的是没有争论的一些结论的话,则系统S4、S5就难以说具有直观性以及与人们日常思维特别是推理的吻合性了:在系统S4和S5中都出现了模态算子的重叠,因而象pp、pp这样的公式大量出现,而这些公式几乎没有什么直观性。至于非经典逻辑中的直觉主义逻辑、多值逻辑,它们离人们的日常思维特别是推理的实际更远,更显得“反常”。同时,同一个领域比如模态逻辑或时态逻辑,由于方法和着眼点不同,可以构造出各种不同的系统。在这种情况下,一些学者作出逻辑系统无正确性可言、逻辑系统纯粹只是人们思考的工具的工具主义结论也就不足为怪了。应该说,工具主义的观点是有一定的可取之处的:它看到了逻辑系统特别是各种非经典逻辑系统远离日常思维与推理和作为“纯思维产物”的高度抽象性,看到了逻辑学家在建构各种逻辑系统时的高度的创造性或“主观能动性”。但是,另一方面,从本质来看,工具主义的这种观点是不正确的,也是不可取的。它完全抹杀了逻辑系统建构的客观基础,否定了逻辑系统最终是人们特别是逻辑学家的主观对思维实际、推理实际的反映。这种观点最终的结果就是导致逻辑无用论,最终取消逻辑。这显然是不符合逻辑科学发展的实际和逻辑科学的学科性质的。
而一元论对逻辑系统的“正确性”的理解过于狭窄,也过于严厉,这种观点难以解释在今天各种不同的逻辑系统之间相互并存、互为补充的现实。从本质上讲,尽管任何逻辑系统都是逻辑学家构造出来的,但是,它们是有客观基础的——它总是在一定程度上反映了人类思维特别是推理实际的某一方面或某一领域(否则,它就是没有实际意义的,最终难以存在下去),所以,逻辑系统是有“正确”与“不正确”之分的——正确地反映了人类思维特别是推理实际的逻辑系统就是正确的,反之则是不正确的。应该说,这一点是一元论与多元论都可以同意的,但是,在承认这一说法的同时,还应该看到,“正确地反映人类思维特别是推理的实际”是可以有不同的程度、不同的层次的:逻辑系统对人类思维特别是推理实际的反映可以是比较普遍、一般的(比如传统逻辑与经典逻辑),也可以是比较特殊、具体的(比如某些非经典逻辑系统,它所反映的就是相对于某一特定主题或领域的特定的思维与推理);逻辑系统对人类思维特别是推理实际的反映可以是比较直观、与日常较为吻合的,也可以是相对来说较为抽象、远离现实的。从这个意义上来讲,逻辑系统的“正确性”是多样的,不可绝对化和唯一化。所以,我认为,一元论坚持“只有一个正确的、唯一的逻辑”是不妥的,相反,多元论的观点则是可以接受的。
如果按哈克的分析把非经典逻辑分成“扩展的逻辑”与“异常的逻辑”的话,那么,很显然,扩展的逻辑是以经典逻辑为基础,将经典逻辑理论应用于某一领域或学科而形成的对经典逻辑的扩充,它们之间并不存在互斥、对立的情况,它们都可以是“正确的”。至于“异常的逻辑”,它的某些性质与特征确实可能与经典逻辑不同甚至相矛盾(例如在直觉主义逻辑、多值逻辑中排中律的失效等等),因此,它们有“对立”的地方,但就经典逻辑与某一异常逻辑分支相比而言,它们的对立或不一致只是在某些方面,而从整个系统的性质来看,它们的互通之处更多,因此,经典逻辑与某一异常逻辑分支之间的所谓“对立”之处,恰恰是该异常逻辑分支的独特之处,也是它对某一问题的不同于经典逻辑的处理和解决之处,所以,从这个意义上讲,它对经典逻辑的意义不在于“否定”了经典逻辑的某些定理或规则,而在于对经典逻辑忽略了的或无法处理的地方进行了自己的独特的处理。所以,经典逻辑与异常逻辑之间的“对立”是表面上的,其实质是它们之间的互补。
【参考文献】
[1]陈波.逻辑哲学导论[M].北京:中国人民大学出版社,2000.
[2]冯棉,等.哲学逻辑与逻辑哲学[M].上海:华东师范大学出版社,1991.
[3]桂起权.当代数学哲学与逻辑哲学入门[M].上海:华东师范大学出版社,1991.
[4]杨百顺.西方逻辑史[M].成都:四川人民出版社,1984.
[5]江天骥,等.西方逻辑史研究[M].北京:人民出版社,1984.
数学的逻辑推理篇5
【英文摘要】philosophicallogicisapolysemantincontemporarylogicalliterature.webelieveit'sanon-classicallogicwithphiloso-phicalpurportorcause.itsrisearosesalotoftheoreticalproblems.thisessayexpoundsthelimitsofclassicallogic,non-monotonyanddeduction,logicalmathematicalizationanddepart-mentalization,theownershipofinductivelogic,etc.
【关键词】经典逻辑/非经典逻辑/演绎性/数学化/部门化/哲学逻辑classicallogic/non-classicallogic/deduction/mathematicalization/departmentalization/philosophicallogic
【正文】
哲学逻辑的崛起引发一系列理论问题。我们仅就其中几个提出一些不成熟的看法。
一、经典逻辑和非经典逻辑的界限
在这里经典逻辑是指标准的一阶谓词演算(cqc),它的语义学是模型论。随着非经典逻辑分支不断出现,使得我们对经典逻辑和非经逻辑的界限的认识逐步加深。就目前情况看,经典逻辑具有下述特征:二值性、外延性、存在性、单调性、陈述性和协调性。
传统的主流观点:每个命题(语句)或是真的或是假的。这条被称做克吕西波(chrysippus)原则一直被大多数逻辑学家所恪守。20年代初卢卡西维茨(j.lukasiwicz)建立三值逻辑系统,从而打破了二值性原则的一统天下,出现了多值逻辑、部分逻辑(偏逻辑)等一系列非二值型的逻辑。
经典逻辑是外延逻辑。外延性逻辑具有下述特点:第一,这种逻辑认为每个表达式(词项、语句)的外延就是它们的意义。每个个体词都指称解释域中的个体;而语句的外延是它们的真值。第二,每个复合表达式的值是由组成它的各部分表达式的值所决定,也就是说,复合表达式的意义是其各部分表达式意义的函项,第三,同一性替换规则和等值置换定理在外延关系推理中成立。也是在20年代初,刘易士(c.i.lewis)在构造严格蕴涵系统时,引入初始模态概念“相容性”(或“可能性”),并进一步构建模态系统s1-s5。从而引发一系列非外延型的逻辑系统出现,如模态逻辑、时态逻辑、道义逻辑和认知逻辑等等出现。
从弗雷格始,经典逻辑系统的语义学中,总是假定一个非空的解释域,要求个体词项解释域是非空的。这就是说,经典逻辑对量词的解释中隐含着“存在假设”,在60年代被命名为“自由逻辑”的非存型的逻辑出现了。自由逻辑的重要任务就在于:(1)把经典逻辑中隐含的存在假设变明显;(2)区分开逻辑中的两种情况:一种与存在假设有关的推理,另一种与它无关。
在经典逻辑范围内,由已知事实的集合推出结论,永远不会被进一步推演所否定,即无论增加多少新信息作前提,也不会废除原来的结论。这就是说经典逻辑推理具有单调性。然而于70年代末,里特(r.reiter)提出缺省(default)推理系统,于是一系列非单调逻辑出现。
经典逻辑总是从真假角度研究命题间关系。因而只考察陈述句间关系的逻辑,像祈使句、疑问句、感叹句就被排斥在逻辑学直接研究之外。自50年代始,命令句逻辑、疑问句逻辑相继出现。于是,非陈述型的逻辑存在已成事实。
经典逻辑中有这样两条定理:(p∧q)(矛盾律)和p∧pq(司各特律),前者表明:在一个系统内禁不协调的命题作为论题,后者说的是:由矛盾可推出一切命题。也就是说,如果一个系统是不协调的,那么一切命题都是它的定理。这样的系统是不足道的(trivial)。柯斯塔(m.c.a.dacosta)于1958年构造逻辑系统cn(1〈n≤ω)。矛盾律和司各特律在该系统中不普遍有效,而其他最重要模式和推理规则得以保留。这就开创了非经典逻辑一个新方向弗协调逻辑。
综上所述非经典逻辑诸分支从不同方面突破经典逻辑某些原则。于是,我们可以以上面六种特征作为划分经典逻辑与非经典逻辑的根据。凡是不具有上述六种性质之一的逻辑系统均属非经典逻辑范畴。
二、非单调性与演绎性
通常这样来刻画演绎:相对于语句集合γ,对于任一语句s,满足下述条件的其最后语句为s的有穷序列是s由γ演绎的:序列中每个语句或者是公理,或者是г的元素,或者根据推理规则由前面的语句获得的。它的一个同义词是导出(derivation)。演绎是相对于系统的概念,说一个公式(或语句)是演绎的只是相对于一不定的公理和推理规则的具体系统而言的。演绎概念是证明概念的概括。一个证明是语句这样的有穷序列:它的每个语句或是公理或是根据推理规则由前面的语句得出的。在序列中最后一个语句是定理。
现在我们考察单调逻辑中演绎情况。令w是一阶逻辑公式的集合,d为缺省推理的可数集,cons(d)为d中缺省的后承的集合。我们来建立公式φ的缺省证明概念:首先我们必须确定从wucons(d[,0])。导出φ这种性质的缺省集合d[,0]。为确保在d[,0]中缺省的适用性,我们须确定缺省集合d[,1],致使能从wucons(d[,1])中得出在d[,0]中缺省的所有必须的预备条件。我们从这种方式操作直至某一空的d[,k]。这意谓着从w得出在d[,k-1]中的必须的预备条件。然后我们确定一个证明,只是我们不陷入矛盾,即是w必须跟包括在证明中的所有缺省后承的集合相一致。例如,给定缺省理论:
t=({p},{δ[,1]=p:r/r,δ[,2]=r:ps/ps})({δ[,2]}),{δ[,1]},φ是s在t中的缺省证明。
形式地说,φ在正规缺省理论t=(w,d)中的一个缺省证明是满足下述条件的d的子集合的有穷序列(d[,0],d[,1],…d[,k]):
(i)φ从wucons(d[,0])得出。
(ii)对于所有i〈k,从wucona(d[,i+1])得出缺省的所有预备条件。
(iii)d[,k]=φ。
(iv)wucons(u[,i]d[,i])是一致的。
由上面可以看出缺省推理中的证明是与通常的演绎证明是不同的,前者比后者要宽广些。
附图
由此可见,缺省逻辑中的推出关系比经典逻辑中的要宽。因而相应扩大了“演绎性”概念的外延。于是可把演绎性分为:强演绎性和弱演绎性。后者是随着作为前提的信息逐步完善,而导出的结论逐步逼近真的结论。
三、逻辑的数学化和部门化。
正如有人所指出的那样,“逻辑学在智力图谱中占有战略地位,它联结着数学、语言学、哲学和计算机科学不同学科。”[2]作为构建各学科系统的元科学手段的逻辑与各门科学联系越来越密切。它在当代发展中,表现出两个重要特征:数学化和部门化。
逻辑学日益数学化,这表现为:(1)逻辑采取更多的数学方法,因而技术性程度越来越高。一些逻辑问题(如系统特征问题)的解决需要复杂的证明技术和数学技巧。(2)它更侧重于数学形式化的问题。其实数学化的本质是抽象化、理想化和泛化(普遍化)。这对像逻辑这样的形式科学显然是非常重要的,近一个世纪逻辑迅速发展就证明了这一点。逻辑方法论的数学化在本世纪下半叶正在加速。这给予逻辑的一些重要结论以复杂的结构和深入的处理,使逻辑变得更精确更丰富。但是,由于逻辑中数学专门化已定型并且限定了它自己,所以逻辑需向其他领域扩张,拓宽其研究领域就势所必然。
逻辑向其他学科领域的延伸并吸收营养,于是出现了各种部门逻辑,如认知逻辑、道义逻辑、量子逻辑等等。我们把逻辑学这种延伸和部门逻辑出现称做逻辑部门化。
哲学逻辑就是逻辑部门化的产物,它是方面逻辑或部门逻辑。众所周知,经典逻辑演算的理论、方法和运算技术具有高度的概括性,它适用于一切领域、一切语言所表达的演绎推理形式。所以,它具有普遍性,是一般的逻辑。有人认为一阶演算完全性定理表明“采用现代数学方法和数学语言来刻画的全体‘演绎推理规律’恰好就是人们在思维中所用的演绎推理规律的全体,不多也不少!”[3]。表达一阶逻辑规律的公式是普通有效的,即是这些公式在任何一种解释中都是真的。而哲学逻辑各分支只是研究某一方面或领域的演绎推理规律,表达这些规律的公式只是在一定条件下在某一领域是有效的,即是它们在具有某种条件解释下是真的。例如,模态公式(d)pp,(t)pp,(b)pp,(4)pp,(e)pp,分别在串行的、自反的、对称的、传递的、欧几里得的模型中有效。而动态逻辑的一些规律只适用于像计算程序那样的由一种状态过渡到另一种状态转换的动态关系。
部门逻辑另一种含义是为某一特定领域提供逻辑工具。例如,当人们找出描述一个微观物理系统在某一时刻的可观察属性的命题的一般形式。对其进行运算时,发现一些经典逻辑规律失效,如分配律对这里定义的合取、析取运算不成立。于是人们构造一种能够描述微观物理世界新的逻辑系统,这就是量子逻辑。
四、哲学逻辑划界问题
哲学逻辑形形色色并且难于表征。在现代逻辑文献中,“哲学逻辑”是个多义词。它的涵义主要的有三种:它的第一种涵义是指关于现代逻辑中一些重要概念和论题的理论研究。例如,对于名称(词项)、摹状词、量词、模态词、命题、分析性、真理、意义、指涉、命题态度、悖论、存在乃至索引等概念及与它们相关的论题的理论研究以及利用形式逻辑工具处理逻辑和语言的逻辑结构的哲学争论。它的第二种涵义是指非经典逻辑中一个学科群体,它包括模态逻辑、多值逻辑等等众多逻辑分支。它的第三种涵义是兼指上述两种涵义的“哲学逻辑”。
我们认为,第一种涵义上的“哲学逻辑”不是研究推理有效式意义上的逻辑,而是逻辑哲学。我们赞成在第二种涵义上使用“哲学逻辑”一词。于是可以给出下述定义:哲学逻辑是具有哲学旨趣或涉及哲学事业的非经典逻辑,在这里应对“哲学”做广义的理解。哲学逻辑不仅与传统哲学中的概念和论题有直接或间接联系。而且也涉及各门科学中具有方法论性质的问题和其他元科学问题。
在我们看来,“归纳”和“演绎”一样,是传统哲学所关注的重要哲学概念,而且也是现代一些哲学家所争议的问题之一。同时归纳逻辑方法的启发作用在认知过程中不可低估,归纳的一些方法和技术同样是一些学科的元科学因素,是发现真理构建学科系统不可少的。因此,它应属于哲学逻辑。《哲学逻辑杂志》亦把它列入哲学逻辑诸分支之首。
问题在于,归纳推理的复杂性,对它的形式刻画和找出能行程序遇到不易克服的困难,致使其成果与演绎推理所获得成果相比,显得不那么丰硕。然而,由于人工智能等技术上的需要,推动着更多的人研究归纳推理,总会有一天,归纳逻辑也像演绎逻辑那样用形式方法来处理。
【参考文献】
[1]antoniou,g.:1997,nonmontonicreasoning,themitpress,cambridge,masschusetts.
数学的逻辑推理篇6
关键词:peirce;科学家;逻辑学家;科学;指号学;化学概念
charlessanderspeirce(1839-1914),其一生曾作为“一个美国人的悲剧”〔1〕,现在已经越来越多地被认为是他那个时代、也是美国至今产生的最有创造性、最具多才多艺的伟大思想家。他广博的研究涉及非常不同的知识领域:天文学、物理学、度量衡学、测地学、数学、逻辑学、哲学、科学理论和科学史、指号学、语言学、经济计量学和实验心理学等等。而且这里的许多领域,peirce在不同程度上被视为倡导者、先驱甚至是“鼻祖”。russell早就做出评价:“毫无疑问,他是十九世纪末叶最有创见的伟人之一,当然是美国前所未有的最伟大的思想家。”〔2〕而当代在世哲学家h.putnam称他为“所有美国哲学家中高耸的巨人”〔3〕。
虽然peirce的思想具有极为广阔的视野,但当今学者所公认、peirce本人也承认的他的两个主要研究领域却是科学和逻辑学。科学和逻辑学是peirce毕生付出精力最多的两个领域,也是他在大学毕业后决定他一生将做什么时曾犹豫不决的两种选择。但在其学术兴趣上它们是他的孪生子,二者在理论联系上常常是融为一体,成为peirce最倾心关注的焦点。而且,作为科学家和逻辑学家的经验是peirce整个哲学系统构建的基础与出发点,是贯穿他一生思想发展变化的重要影响因素。实际上,科学和逻辑学的共同追求正是peirce为自己所界定的生活目标。把握他的这一显著特征,我们可考察作为科学家的peirce与作为逻辑学家的peirce之间的某些联系。
1科学家职业、逻辑学家志向
从实际从事职业来看,peirce是位科学家,包括化学家、大地测量员、物理学家、天文学家、工程师、发明家、实验心理学家等等;同时这也是他谋生的门路,是他最早获得学术名声的领域。
成为一名科学家,peirce具有非常优越的条件;同时这也是他的亲戚朋友尤其是父亲所期望的。peirce出生于具有良好科学氛围的家庭,特别是其父亲benjaminpeirce是哈佛大学天文学和数学perkins教授,也是当时美国最有影响的数学家。peirce从小由其父亲教授数学、物理学和天文学等学科;其聪颖智慧深得父亲欣赏。而peirce本人也深受父亲影响,尤其是在父亲1880年去世之后,他极想遵照父亲遗愿而继承父亲的事业,从此专注于科学研究。
在peirce十几岁时,他已经在家中建立了私人化学实验室,并写出了《化学史》;其叔叔去世后,他又继承了他叔叔的化学和医学图书馆。1859年从哈佛大学毕业后,他父亲安排他在美国海岸测量局(后来改名为海岸和地质测量局)野地考察队作为临时助手学习锻炼了一年;而同时他私下跟随哈佛动物学家louisagassiz学习分类学方法。1862年进入哈佛的lawrence科学研究所,并于1863年毕业获得化学理学士。其间于1861年他再次进入海岸测量局,但这次是作为长期助手;1884年10月至1885年2月主管度量衡办公室;1867年父亲成为海岸地质测量局的第三任主管,peirce于同年7月1日由助手(aide)提为副手(assistant),职位仅次于主管;他的这一职位上一直持续到1891年12月31日,时间达24年半之久。从1872年11月开始,他又负责钟摆实验;在1873—1886年间他在欧洲、美国以及其他地方的站点进行钟摆实验。晚年(1896年直到1902年)主要为圣劳伦斯能量公司做顾问化学工程师。
同时,peirce在1867年被安排在气象台从事观测工作,并于1869年被任命为副手。他曾是一次日环食和两次日全食现象的观测者,还负责使用气象台新获得的天体光度计。1871年其父亲获得国会授权进行横跨大陆的地质测量,peirce由此又成了职业的大地测量员和度量衡学家。
peirce生前虽只出版过一本科学方面的书(《光测研究》(1878)),为《thenation》杂志撰写的短评、书评现多收集在由ketner和cook编辑出版的《contributionstothenation》中;但他在海岸地测局和哈佛气象台的诸多贡献已经为他(也为这两机构)在很年轻时就赢得了国际(特别是在欧洲)声誉(peirce1870年、1875年、1877年、1880年和1883年先后五次接受测量局任务到欧洲考察,同欧洲的许多科学家建立了联系,并极力主张扩大科学界的国际联系)。peirce于1867年成为美国文理学院的常驻会员,1877被选为国家科学院的成员,1880年被选为伦敦数学学会成员,1881年被选进入美国科学进步协会。而且值得一提的是,现在peirce已被认为是采用光波长来测定米制长的先驱。
然而,尽管他原本可以很好地专职于科学职业,并有广阔的前景;并且事实上,他也是由化学进入了各种各样的科学部门,并投入了极大的兴趣和精力,成为美国当时杰出的科学家。但与逻辑学相比,它们只是他生命的第二焦点。
从理想志向来看,peirce视逻辑学为其天职。早年在父亲指导下学习《纯粹理性批判》时就认为康德的失败主要在于其“平庸的逻辑”,要超越康德体系,必须发展一种崭新的逻辑。他声称在12岁时已经除了逻辑别无其他追求;甚至在生活潦倒、疾病缠身的困境中他依然坚持这一工作。他建有自己的私人逻辑史图书馆,他是近代以来少有的精通古代和中世纪逻辑的一位逻辑学家。他自己说,他是自中世纪以来唯一全身心贡献于逻辑学的人,并声称他是终生的逻辑推理学习者。1906年他在美国《who’swho》中把自己命名为一名逻辑学家,这在当时是绝无仅有的现象。晚年在milford的arisbe,他形容自己为田园逻辑学家、逻辑学隐士。与具有美好前程的科学职业相比,peirce之所以热中于当时不可能成为谋生手段的逻辑学,更多的是出于对自己既定学术目标的追求:要发展一种有前途的逻辑。他对于逻辑的执著和热情,使得他在逻辑学上的贡献并不亚于科学。
年仅二十几岁时,peirce就开始在哈佛和lowell学院作关于逻辑学的演讲;从1879年直到1884年,在保持海岸地质测量局职位的同时,他作为johnshopkins大学(美国历史上第一所研究生学院)的兼职逻辑学讲师(这是他一生唯一一次获得的大学职位),并在这期间出版了他第二本书(也是最后一本)《逻辑研究》(1883年,pei
rce主编)。这本书在当时的美国乃至整个欧洲都有较大影响。在1901年,他为baldwin的《哲学心理学辞典》撰写了大部分的逻辑学词条。
虽然peirce只有短暂的学院生活来传播他的逻辑理论,但在他那个时代,peirce已经是一位国际性人物。在五次访问欧洲期间,虽然他是作为科学家去考察,但不仅碰到了许多著名科学家,也会见了当时知名的数学家与逻辑学家,包括demorgan、mccoll、jevons、clifford、spencer等,还与cantor、kempe、jourdain、victoria夫人等保持着通信关系。1877年英国数学家和哲学家w.k.clifford评价“charlespeirce...是最伟大的在世逻辑学家,是自aristotle以来已经为这一学科增加实质内容的第二个人,那另一个是georgeboole,《思维规律》的作者。”〔4〕
而在今天,peirce学者不断发掘出的peirce的逻辑尤其是现代逻辑贡献更是值得重视。一般认为,他早期主要是作为一名布尔主义者(boolean)从事代数逻辑方面的研究,而晚年他的贡献主要集中于图表逻辑方面,主要包括存在图表系统和价分析法。1870年peirce的“描述一种关系逻辑记法,源于对boole逻辑演算的扩充”是现代逻辑史上最重要的著作之一,因为它第一次试图把boole逻辑代数扩充到关系逻辑,并在历史上第一次引入(比frege的begriffschrift早两年)多元关系逻辑的句法。在1883年之前他已经发展了量化逻辑的完全的句法,与直到1910年才出现的标准的russell-whitehed句法仅仅在特殊符号上有点不同。
在对于数理逻辑贡献的广泛性和独创性方面,peirce几乎是无与伦比。与逻辑主义学派的frege相比,peirce的特殊贡献不在定理证明方面上,而更多的是在新颖的逻辑句法系统和基本逻辑概念的精制化发展上。他创造了十多个包括二维句法系统在内的不同逻辑句法系统。把实质条件句算子(在他那里的形式为“—<”)引入了逻辑学,比shaffer早40年发展了shaffer竖并仅仅基于这一算子发展了一完全的逻辑系统。还独立地系统采用了真值表方法和归谬赋值法,过早地意识到skolem前束范式的技术。在johnshopkins大学教书期间,peirce开始研究四色图猜想并发展了逻辑和拓扑学特别是拓扑图论之间的广泛联系。
我们看到,peirce不仅是有着突出贡献的科学家,同时也是著名的逻辑学家。然而在二者关系上,首要的一点是:他承认自己热爱科学,但坦言对于科学的研究只是为了他的逻辑;因为逻辑的研究需要从各种特殊科学(还有数学)的实际推理方法中概括出一般的逻辑推理方法,而决不是仅仅从逻辑书籍或讲课中背诵、记忆和解题;多样化的科学研究正是为了逻辑之全面概括,由它们获得的材料形成了逻辑学的基础和工具。实际上,这种前后的“从属关系”最突出地表现在他晚年常常是以作为科学家的收入来维持从事逻辑学研究的时间。
2逻辑学作为科学
虽然上文表明逻辑学家peirce与科学家peirce之间有近乎目的与手段间的主从关系,但事实上并非如此简单,它们还有更为深刻的一层关系,那就是:逻辑学也是科学。很显然,这是peirce长期的实验室经历已经使得他以科学的方法处理所有问题(他有时的确称自己为“实验室哲学家”)包括逻辑学了。
我们首先看,科学在peirce那里意味着什么?peirce看到大多数人包括科学界之外的人都习惯于把科学视为特殊种类的(主要是指系统化的)知识,而他更愿意像古希腊人那样把科学作为认知的方法,但他强调这种方法一定要是科学探究(inquiry)的方法。知识开始于怀疑,为了寻求确定的信念我们必须要解决(settle)怀疑,一般解决怀疑的方法主要有情感方法(求助于自己的感觉倾向)、信忠团体的方法(选择那些最适合其社会团体的那一信念)和尊重的方法(求助于自己对于某特别个人或机构的尊重之感情)等;但这些方法本质上都是自我中心的非客观的方法,它们往往只通过怀疑者自己的行为、意愿来选择信念,缺乏足够的证据。而真正客观的方法只有科学探究的方法,在这种方法指引之下,探究者从经验出发基于科学共同体(community)的合作去寻求真理(truth)或实在(reality),这也正是科学活动;最终的真理性认识可能并不是由某一实际的探究者所发现,但只要是遵循这种方法、运用先前的结果,最后都必定会一致达到真理的。这正是peirce在《通俗科学月刊》上发表的两篇经典性论文《信念的确定》和《如何使我们的观念清楚明白》中所阐述的实用主义(与后来james版本的实用主义有很大不同)方法相一致的,事实上如peirce所指出的,实用主义不是什么世界观,本质上是一种方法,一种科学探究的方法。而与此同时,我们看到,peirce把逻辑学视为设计研究方法的艺术,是方法之方法,它告诉我们如何进行才能形成一个实验计划;逻辑就是对于解决怀疑的客观方法的研究,是对于达到真理之方式的研究,其目的就是要帮助我们成为“科学人”。现代科学之优于古代之处也正在于一个好的逻辑,健全的逻辑理论在实践上能缩短我们获知真理的等待时间,使得预定结果加速到来。
但是我们发现,他在思想更为成熟的阶段是把逻辑学的科学属性放置于指号学(semiotics或更多的是semieotics)的语境中来考察的,虽然这种处理与以上把逻辑学视为科学方法之研究存在着根本上的一致性。
peirce不止一次指出,在最广泛的意义上的逻辑学就是指号学或关于指号的理论,仅仅是指号学的另一个名字。〔5〕它包括三个部门:批判逻辑学(criticallogic),或狭义上的逻辑学,是指号指称其对象的一般条件的理论,也即我们一般所谓逻辑学;理论语法(speculativegrammar),是指号具有有意义特征的一般条件的学说;理论修辞(speculativerhetoric),又叫方法论(methodeutic),是指号指称其解释项的一般条件的学说。〔6〕这种划分可能受中世纪大学三学科:语法、辩证法(或逻辑学)和修辞的课程设置的影响,指号学在某种程度上可视为对于中世纪后期所理解的逻辑的现代化版本。而我们在此需要强调的是,peirce把指号学视为经验科学、观察科学。推理就是对于指号的操作,观察在其中发挥着重要作用;指号学同其它经验科学的不同在于它们实验操作对象不一样,在于其它科学的目的仅仅是发现“实际上是什么”而逻辑科学要探明“必定是什么”。但既然是经验科学,根据经验学习的科学人进行逻辑推理所得到的结论就是可错的即准必然的(事实上,任何逻辑必然都只是相对于特定
推理前提而产生必然的特定结论)。
更进一步,peirce把狭义上的逻辑学(logicexact)分成假设逻辑(abductivelogic)、演绎逻辑和归纳逻辑三部分。显然这比传统逻辑上演绎(必然的)、归纳(可能的)二分的做法多出了内容。peirce得出这样的结论是对于aristotle三段论基本格研究的结果,他认为barbara集中表现了演绎推理的本质,而作为特殊的演绎三段论baroco(把barbara中结论的否定作前提、小前提的否定作结论)和bocardo(把barbara中的结论的否定作前提、大前提的否定作结论),如果把它们的结论考虑为或然性的,则分别相应于假设推理(abductivereasoning)和归纳推理。但更重要的是,peirce在此显示出了逻辑学与科学的最合理的紧密联系。在他看来,演绎逻辑也即数学的逻辑,而假设逻辑和归纳逻辑主要就是科学的逻辑。在演绎逻辑已经得到普遍承认的情况下,他终生的愿望就是要把归纳和假设(abduction)同演绎一起坚固地和永久地确立在逻辑概念之中。在科学探究过程中,假设、演绎和归纳先后组成了三个不同阶段的科学方法,它们的共同作用使得科学探究能自我修正。
peirce把假设放在首位,作为科学探究程序的第一步,目的在于发现和形成假说。假设是为解释违反规律(或习惯)的意外事实而产生假说的过程,它能产生新信息,peirce把它视为所有科学研究甚至是所有普通人的活动的中心。但这种假设并没有提供安全可靠的结论,假说必须要经过检验。于是,还需要演绎来解释(explicate)和演示(demonstrate)假说即得出预言;再后由归纳回归到经验,旨在通过观察被演绎出的结果是否成立来证实或否证那些假说,即决定假说的可信赖度。在这连续的三种推理形式中,假设是从意外事实(surprisingfacts)推到对事实的可能性解释,演绎是从假说前提推到相应结论,归纳则是从实例到一般化概括。经过这样的科学探究,我们在科学共同体中将能不断接近真理。
3逻辑学中的化学概念移植
为更具体地论述peirce的科学研究与逻辑学研究之间的紧密联系,我们在此可谈到peirce对科学中的许多概念向逻辑学研究的成功应用,这突出表现在化学上。因为化学是peirce的大学专业,也是他进入整个经验科学的入口。
逻辑学作为一门特殊的学科领域,事实上从近代以来,就从数学(包括代数和几何)理论那里找到了非常有力的发展动力和理论技术。我们在此谈到的化学概念应用作为整个自然科学概念推广中的一例其实也是peirce为发展逻辑学而提出的。
首先,peirce晚年极为倾心的存在图表逻辑构想正是基于化学图表原理(可能还有拓扑学方法的启发)。存在图表是peirce在其指号学背景下对euler图和venn图的重大发展,具有极强的表现力。其在自然、直观、易操作上要远胜于代数方法(包括标准的peano-russell记法),因为我们心灵的思想过程被同构地展现在推理者面前,对于图表的操作代替了在化学(和物理)实验中对于实物的操作。化学家把这样的实验描述为向自然(nature)的质疑,而现在逻辑学家对于图表的实验就是向所关涉逻辑关系之本性(nature)的置疑。〔7〕
第二个例子,现代逻辑(可能从《数学原理》开始)中的一对基本概念:命题和命题函项(或有时称为闭语句和开语句)原本就是来自化学中的“饱和”(saturation或gesättigkeit)和“未饱和”概念。peirce用黑点或短线来代替语句中的“指示代词”(即逻辑中的自变元),得到形如“——大于——”、“a大于——”这样的形式,它们分别被称为关系述位(relativerhema)(区别于像系词一样的关系词项)和非关系述位,也即他那里的谓词(谓词是几元的取决于我们到底如何选择去分析命题)。他指出,述位不是命题,并坦言“述位在某种程度上与带有未饱和键(unsaturatedbonds)的化学原子或化学基极为相似。”〔8〕然而不无意外,我们发现同时期欧洲大陆的frege也正在独立地从化学概念得到逻辑研究的灵感。他把诸如“……的父亲”的函项记号称为“未饱和的”或“不完全的”表达式,以与专有名词相区别。〔9〕
另外一个例子是peirce提出的价分析(valencyanalysis)法。正如名字所显示出的,它同化学中的化合价概念密切相关,peirce所使用的词语valency直接源于化学中的术语valence即化合价。价分析是peirce在图表化逻辑思想指引下于存在图表(existentialgraphs)之外创设的另一种二维表现法。其中,显然他是把思想中概念的组合与“化学离子”的组合相比拟,如他采用类似“——”这样的结构表示带有“开放端(looseend)”(即黑点后面的横线)的实体,即谓词;这就是化学中离子结构的简单变形。由于它们的开放端导致的“不稳定”(正像离子本身不稳定一样),开放端之间就可能连接起来形成共同“键”(bond)。如“——”同“——”可形成“——”样式的新结构〔10〕。正是利用这样的离子组键技术,peirce成功证明了其著名的化归论题,即对于三元以上关系都可化归到三元和三元以下的关系,但一元、二元和三元关系却不能化归。这一论题是他哲学思想体系中所坚持的三分法原则的逻辑证明。
综观peirce的科学家经历和逻辑学家志向,peirce把逻辑学视为对于各种科学推理方法的概括,同时又把逻辑学理论指导、应用于科学研究过程。二者紧密相连,互为作用。而更为突出的,他的逻辑贡献大都可追溯到其多样化的科学研究,他的逻辑独创往往也是其科学研究经验的启发性建议。笔者以为,研究peirce的这些方面,我们至少可得出以下启示:逻辑学应从数学和科学推理实践中概括推理的一般本质;逻辑学家应尽可能学习、掌握科学(传统逻辑就因为没有这样做而失败,科学家非逻辑学家或逻辑学家非科学家都不能胜任于对科学推理的分析工作),因为拓宽自己的科学研究领域必将能加强逻辑学家对于逻辑科学的贡献能力;同时科学家要想更为一般地把握住推理方法也应了解逻辑学,但是前者在当前学术界值得特别注意。当前处于被冷落地位的逻辑学要想摆脱这种局面,必须加快发展自己;而经验科学(不再仅仅是数学)必能使得逻辑学发展获得新的生命力,这已经是被现代逻辑的发展史(特别是初创时期)所证实的。
参考文献:
〔1〕库克.现代数学史〔m〕.呼和浩特:内蒙古人民出版社,1982年.61.
〔2〕罗素.西方的智慧〔m〕.北京:商务印书馆,1999年.276.
〔3〕hilaryputnam.peircethelogician〔j〕.historiamathematica,9(1982).292.
〔4〕maxfisch.thedecisiveyearanditsearlyconsequences〔m〕.writingsofcharless.peirce:achronologicaledition(vol.2).bloomington,indiana.indianauniversitypress.1984.introduction.
〔5〕〔6〕〔7〕〔8〕charlessanderspeirce.collectedpapersofc.s.peirce(vol.1-8)〔c〕.cambridge,massachusetts.harvarduniversitypress.1931-58.2.227,2.93,4.530,3.421.(按照peirce文献的通常标注法,这里如“2.227”的记法,小圆点前面的数字为卷数,后面的数字为节数)
〔9〕威廉·涅尔,玛莎·涅尔.逻辑学的发展〔m〕.北京:商务印书馆,1985年.624.
〔10〕robertburch.valentalaspectsofpeirceanalgebraiclogic〔j〕,computersmath.applic,vol.23,no.6-9,1992.665-677.
peirce:thescientistandlogician
【数学的逻辑推理(6篇) 】相关文章:
小学学校工作总结范文(整理5篇) 2024-06-19
季度工作总结范文(整理4篇) 2024-06-11
转正工作总结范文(整理10篇) 2024-05-21
数学教研组教学总结范文(整理10篇) 2024-05-20
幼儿园大班的工作总结范文(整理4篇 2024-05-15
班主任家访工作总结范文(整理4篇) 2024-05-15
慢病工作总结范文(整理7篇) 2024-04-28
教资的综合素质(6篇) 2024-07-13
数学的逻辑推理(6篇) 2024-07-13
化学品出口流程(6篇) 2024-07-13