圆的周长教学设计(整理10篇)

时间:2024-04-01 来源:其他

圆的周长教学设计篇1

教学资料:

圆的周长(小学数学九年制义务教材第十一册).

教学目的:

1.让学生明白什么是圆的周长.

2.理解圆周率的好处.

3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

教学重点:

推导圆的周长计算公式.

教学难点:

理解圆周率的好处.

教具学具:

1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

2.电脑软件及演示教具.

教学过程:

一、复习:

上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

二、导入:

这节课我们继续研究圆的周长(板书课题).

1.指幻灯图片(长方形正方形三角形)问:这些是什么图形?谁能指出它的周长?

2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

问:什么是周长?

出示:平面上封闭图形一周的长度,就是它的周长。

想一想:什么叫元的周长

出示:围成圆的曲线的长叫做圆的周长。

3.你能测量出这个圆的周长吗?(能)

4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

回答:不能.

想一想圆的周长都能够用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?这天我们就来研究这个问题.

三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和哪些部分有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

四、学生动手测量、教师巡视指导.

五、统计测量结果.

观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

六、电脑出示:

(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁明白我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书63页,默读“其实”到“π≈3.14”.以及“你明白吗?”

七、看书后回答问题:

1.什么叫圆周率?

2.你明白是谁把圆周率的值精确到7位小数吗?

师:早在一千五百年前祖冲之就已经把圆周率精确到了7位小数了,他的发现比外国数学家早一千多年,一千多年是何等漫长的时间啊!为了纪念他,科学家把月球上的一座环形山脉命名为祖冲之山,这是我们中华民族的骄傲!

3.明白了圆周率,还需明白什么条件就能够计算圆的周长?

4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式就应怎样表示?

此刻你们已经掌握了圆的周长的计算公式,下面你能根据所学的知识决定下面的说法是否正确?

决定:

1、π=3.14()

2、只要明白圆的直径或者半径,就能够明白圆的周长()

3、大圆的圆周率比小圆的圆周率大。()

求下面圆的周长:(见课件)

师:十分不错,大家基本掌握了圆的周长的计算方法,我们能够用这些知识来解决生活中的一些问题,下面看例题1:

八、出示例1:

一辆自行车车轮的半径是33厘米。车轮滚动一周,自行车前进多少米?小明家离学校一千米,骑车从家到学校,轮子C大约转了多少圈(π取3.14,得数保留两位小数。)

请同学们想一想:车轮滚动一周的距离实际指的是什么?

解:c=0.33单位:米

c=2πr1000÷2=500(圈)

=2x3.14×0.33

答:骑车从家到学校,轮子大约转了500圈。

=207.24(cm)

≈2(米)

答:车轮滚动一周约前进2米.

九、课堂练习:

(一)应用题:

1.一张圆桌的直径是0.95米。这张圆桌的周长是多少米?

2.摩天轮的半径是5米,坐着它转动一周,大约转过多少米?

3.汽车轮胎的半径是0.3米,它滚动1圈前进多少米?滚动1000圈前进多少米

(二)选取填空:

1、车轮滚动一周,前进的距离是求车轮的()

A.半径B.直径C.周长

2、圆的周长是直径的()倍。

πC.3

3、大圆的周长除以直径的商()小圆的周长除以直径的商。

A.大于B.小于C.等于

十.思考:已知圆的周长,如何求它的半径或直径呢?

圆的周长=直径×圆周率

直径=圆的周长÷圆周率

半径=圆的周长÷圆周率÷2

圆的周长教学设计篇2

【教学内容】

新课标人教版六年级上册第62~64页。

【教学目标】

1.通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。

2.能利用圆的周长的计算公式解决一些简单的数学问题。

3.培养学生的观察、比较、分析、综合及动手操作能力。

4.通过对圆周率的计算,渗透爱国主义的思想。

【教学重、难点】

重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。

难点:理解圆周率的意义。

【教具、学具】

课件、软尺、直尺、绳子、圆形。

【教学过程】

课前交流:请同学们唱一首歌。

(设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)

一、创设情景,生成问题

国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。

(设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

让学生说一说常用的长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。

(设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)

二、探索交流,解决问题。

师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。

师:同桌想一想圆的周长怎样测量?

师:把你的好方法在小组内交流一下。

(设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?

(设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)

生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。

师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。

师演示(线绕圆一周,然后量出线的长度。)

师:还有其他的方法吗?

生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。

师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。

生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。

师:这个办法也很妙!其他同学还有要补充的吗?

生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。

师:你的想法可真不简单!

师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。

师:刚才大家找到了这么多求圆的周长的好的方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?

生:能!

师:正方形的周长和什么有关?

生:周长是边长的4倍,

师:那么圆的周长和什么有关系呢?

生:圆的直径越长圆越大,所以周长就越长。

师:那周长和直径有怎样的关系呢?

(设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的求知欲。)

师:同学们用自己手中的工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。

师:现在大家通过填写表格发现了什么?

生:在测量中发现,大小不同的圆的周长是不同的。

师:既然不同的圆的大小是不同的,那么圆的大小是由什么决定的?

生:是由半径(或直径)唯一决定的。

师:圆的周长与直径或半径之间到底存在着怎样的关系?

生:每组算的结果不大一样,但都是3点多。

师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?

生:一样。

师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。

师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?

我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

(设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)

师:你能通过分析表格得到圆的周长的计算公式了吗?

学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

师:从表中我们可以看出圆的周长÷直径=圆周率

(板书:圆的周长=π×直径)。

如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr(板书)。

生读:c=πdc=2πr

师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?

生:圆的直径或半径。

(设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的难点。)

三、回顾整理,反思提升。

这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?

(1)今天我学习了圆的周长的知识。我知道圆周率是()和()的比值,它用字母()表示。

(2)我还知道圆的周长总是直径的()倍。已知圆的直径就可以用公式()求周长;已知圆的半径就可以用公式()求周长。

圆的周长教学设计篇3

【微课简介】

《圆的周长公式推导》一课是小学数学新人教版六年级上册的一个知识点,适用于对圆的各部分名称已有初步认识并将学习计算圆的周长公式的学生学习。在这个知识点学习中,学生应用互动软件《圆的工具》辅助学习,通过小组合作的探究活动,对比、分析、概括出圆的周长与直径、半径的关系,推导出圆的周长公式。

【教学背景】

数学是一门需要思维的学科,在学习过程中,有些学生会出现囫囵吞枣的现象,知其然而不知其所以然。圆的周长公式推导是关于圆的知识学习中的一个重难点,理解圆的公式推导过程是帮助学生学习圆周长公式的关键。由于本班学生已经是六年级的学生,在平时的训练中体现出良好的信息技术能力,于是将公式推导这一部分设计为学生应用互动学习软件,在预设的任务中以同桌俩俩合作和四人小组合作的方式进行探究式的学习活动。这样的自主学习活动更注重于学生学习内容的获取过程,让学生在学习过程中自主、积极地去探究,通过“再发现”、“再创造”,建构数学模型,从而对所获得的知识有更深刻的理解和掌握,并灵活应用所学知识解决实际问题,充分体现了“授之以鱼不如授之以渔”的教学理念。而现代化技术的运用,则让学生在有限的时间里经历数学建构的过程,关注到学生的个体差异,为学生的学习创造了良好的环境,提高了学习效率,获得较好的教学效果。

【教材分析】

圆的周长公式推导是小学数学六年级上册的一个知识点。为了突破这个知识的重难点,应用学习互动软件《圆的工具》辅助学生进行探究活动,让学生自主探究圆周长与直径的关系,推导出圆的周长公式。学生在这一活动中,用交互工具建构数学模型,应用对比、分析、概括等去解决问题,在合作探究中获得能力发展。

【学情分析】

本班学生是六年级学生,具有良好的信息技术能力,在学生的知识系统中,对于圆的各部分名称有了初步的认识。在此基础上,本节课的学习任务是要学生借助学习软件,在给出的任务和要求中自主探究完成实验活动,从而归纳出圆的周长计算公式。

【教学目标】

推导并总结出圆周长的计算公式。

【教学重难点】

推导出圆周长的计算公式。

【教学方法】

以引导探究为主的探究法。

【学习环境与资源】

1、学生分组,每一组至少有一台联网的计算机。

2、探究工具软件《圆的工具》

3、学生探究活动纸

【教学过程】

这一环节主要是进行实验探究,构建模型。

一、出示实验任务,提出实验要求。

1、把用来记录探究数据的学生活动纸分发给学生。

2、介绍实验软件:圆的工具

3、出示探究活动一的任务:

二、学生应用软件开展数学实验

1、同桌合作,轮流进行操作和记录;

【软件使用说明】

2、四人小组进一步协作整理数据,发现规律;

学生应用软件探究圆的周长和直径的关系,将相关数据填入活动报告单,小组进行汇报交流,获得结论。

当学生在完成作业纸时,根据需要可引导学生。例如,当问“圆的直径和周长之间有什么样的关系?圆的周长和直径的关系会不会随着周长的变化而变化”时,引导学生通过观察、对比、分析、归纳出圆周率是固定的一个数值,从而对圆周率有一定的认识,并推导出圆的周长计算公式。并让学生讨论并归纳:“根据圆的半径和直径的关系,如何用半径算出圆的周长?”

这样的过程将探索圆周率的过程简单化,借助现代化技术提高了课堂效率,丰富了学生对圆的认识和理解。

3、组间分享:通过组间的汇报,相互补充各组的发现,阅读相关资料,了解圆周率。

三、建构数学模型

1、通过实验和交流,发现圆的周长和直径的倍数关系,能用直径或半径计算圆的周长。

2、学会按顺利整理数据的实验方法。

【教学总结】

圆的周长公式推导过程在教学中一直是个难点,以往都是让学生拿着圆形物体进行直径、周长的测量,从数据中去寻找周长与直径的关系。这样的操作过程既耗时又费力,且容易出现测量误差导致计算结果出现较大的差距等情况。因此,在设计这节课的时候,我采用了计算机软件的模拟操作,使得整个操作过程的数据精确化,学生借助计算机操作获得的一系列数据,既能获得活动探究所需的数据,又能节约很多操作时间,从而使得整节课的重心放在数据搜集、整理和分析上,学生在一系列精确的数据中获得感知,从而顺利推导出圆的周长公式,实现高效课堂的教学目的。

圆的周长教学设计篇4

教学内容:小学数学实验教材十一册第107~108页“圆的周长”

教学目标:

1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

2、培养学生的观察、比较、分析、综合及动手操作能力;

3、领会事物之间是联系和发展的辨证唯物主义观念以及透过现象看本质的辨证思维方法;

4、结合圆周率的学习,对学生进行爱国主义教育。

教学重点:推导并总结出圆周长的计算公式。

教学难点:深入理解圆周率的意义。

教学准备:电脑课件,一元硬币、茶叶筒、易拉罐、圆形纸片等实物,

以及直尺、绸带,测量结果记录表,计算器,投影资料等

教学过程:

一、创设情境,引起猜想:

(一)激发兴趣

播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

(二)认识圆的周长

1、回忆正方形周长:

小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

2、认识圆的周长:

那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。

[评析]播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基穿

(三)讨论正方形周长与其边长的关系

1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?

2、怎样才能知道这个正方形的周长?说说你是怎么想的?

3、那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

[评析]正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。

(四)讨论圆周长的测量方法

1、讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

2、反馈:(基本情况)

(1)“滚动”——把实物圆沿直尺滚动一周;

(2)“缠绕”——用绸带缠绕实物圆一周并打开;

(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;

(4)初步明确运用各种方法进行测量时应该注意的问题。

3、小结各种测量方法:(板书)转化

曲直

4、创设冲突,体会测量的局限性

刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?

5、明确课题:

今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

[评析]教师引导学生结合具体实物想到采用不同的方法进行测量,,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间又不断设置认知冲突,在遵循学生的认知规律的前提下,有效地培养了学生思维的创造性。

(五)合理猜想,强化主体:

1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反扩

2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

向大家说一说你是怎么想的。

3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

4、小结并继续设疑:

通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

[评析]在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程当中的主体地位。

二、实际动手,发现规律:

(一)分组合作测算

1、明确要求:

圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系。

(二)发现规律,初步认识圆周率

1、看了几组同学的测算结果,你有什么发现?

2、虽然倍数不大一样,但周长大多是直径的几倍?

3、刚才同学们已经对大小不同的圆进行了比较准确的测算,如果我们任选一个圆再进行测算,结果还会怎样?(课件进行验证)

板书:圆的周长总是直径的三倍多一些。

(三)介绍祖冲之,认识圆周率

1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。

2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

3、这个倍数究竟是多少呢?我们来看一段资料。

(投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3。1415926与3。1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

4、理解误差

看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

5、解答开始的问题

现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗

(四)总结圆周长的计算公式

1、如果知道圆的直径,你能计算圆的周长吗?

板书:圆的周长=直径×圆周率

C=πd

2、如果知道圆的半径,又该怎样计算圆的周长呢

板书:C=2πr

追问:那也就是说,圆的周长总是半径的多少倍

[评析]本环节选取一元硬币、茶叶筒、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程;在理解圆周率意义的过程当中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。

三、引导质疑,深入领会(略)

四、巩固练习,形成能力

1、判断并说明理由:π=3。14()

2、选择正确的答案:

大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()

a、大圆的圆周率大于小圆的圆周率;

b、大圆的圆周率小于小圆的圆周率;

c、大圆的圆周率等于小圆的圆周率。

3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

五、课内小结,扎实掌握

通过今天的学习,你有什么收获?

[评析]练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题很好的抓住新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学,用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。

六、课外引申,拓展思维

如果小黄狗沿着大圆跑,小灰狗沿着两个小圆

绕8字跑,谁跑的路程近

[总评]

纵观本课,教师紧密联系学生的已有知识和经验,准确把握知识间的内在联系,不断设置合理的认知冲突,促使学生进行有效的猜想、验证,初步体现了“创设情境——大胆猜想——合作探索——反思归纳”的探索性教学模式,从而充分的体现了在课堂教学中学生的主体作用和教师的主导作用。

圆的周长教学设计篇5

教材版本:《义务教育课程标准实验教科书数学》

教学内容:六年级上册第四单元第57页

教材分析:圆的周长是学生在学习直线图形的周长、面积基础上第一次学习曲线图形的周长。教材关于“圆的周长”这一内容,安排在六年级上册第四单元。教材创设了一个“天坛”的简单情景,帮助学生认识圆的周长,并用“绕线”“滚动”等常用方法测量圆的周长,然后安排了探究活动:“圆的周长与什么有关?有什么关系?”通过研究发现圆的周长与直径的关系,从而推导出圆的周长计算公式。

学情分析:学生是学习的主体,是知识建构的主动者。高年级学生能运用已有的知识经验通过顺迁移探索发现新的知识,并运用新知解决实际问题。他们在小组合作的学习环境下,利用自主探索的学习方式,学习的积极性较高,他们善于探索,敢于质疑,敢于创新,敢于发表自己的主张和看法。学生在第一学段已经直观的认识了圆,建立了周长的概念,并会求直线段围成的图形的周长,对圆的周长有丰富的感性经验。在此基础上,通过本节课的学习让学生经历圆周率的产生与形成过程,探究发现圆的周长计算公式,并能利用公式解答实际问题。

教学目标:

1、使学生经历圆周率的探究过程,推导出圆周长的计算公式,并能正确地计算圆的周长。

2、培养学生的观察、比较、分析、综合及动手操作能力。

3、初步学会透过现象看本质的辨证思维方法。

4、结合圆周率的学习,对学生进行爱国主义教育。

教学要点分析:

教学重点:学生已经建立了周长的概念,对圆的周长也积累了丰富的感性经验。因此,关于什么是圆的周长,学生比较容易理解。圆作为一种曲线围成的图形与学生头脑中熟悉的直线段围成的图形差别比较大,因此探究圆的周长计算公式是本节课的教学重点。

教学难点:在探究圆的周长计算公式时,最有价值的、最具有思维含量的地方是让学生经历圆周率的产生过程,因此本节课充分放手让学生经历圆周率的探究过程,是本节课的教学难点。

教学过程:

一、开门见山,揭示课题

师:大家请看,这是什么图形?(课件出示课本57页天坛情景图)

生:圆形。

师:我们已经认识了圆,今天这节课我们一起来学习圆的周长。(板书课题:圆的周长)

(评析:学生已储备了较丰富的圆形物体的表象,对周长的概念也较容易理解;再者,本节课学生探究的时间较长,四十分钟的课堂学生要经历前人历尽艰辛推导圆周长计算公式的历程;为保证把过程性目标落实到位,在课的起始阶段,开门见山,迅速集中学生的注意力,把他们的思维带进特定的学习情境中。)

二、探索交流,解决问题

1、圆的周长含义

师:请大家想一想,什么是圆的周长?谁能指着圆说一说。

生:圆一周的长就是圆的周长。

师:(指圆)我们把围成圆的曲线的长叫做圆的周长。

2、自主探究求圆的周长的方法

师:怎样求圆的周长呢?下面我们借助学具圆片来研究。

大家请看,这是一个圆形纸片,你有办法知道它的周长吗?请小组同学商量好方法后,合作求出每个圆片的周长,并把结果记录在表格中。

(小组活动,教师巡视。)

师:哪个小组先来介绍你们的方法?

生1:我们是用绳子绕圆片一周,然后量出绳子的长度,就得到了圆片的周长。

师:还有那个小组也用到了这个方法?

(全体学生都举手)

师:噢,都用到了,看来是个不错的方法。还有不同的方法吗?

生2:我们先在圆片上作个记号,然后把圆片沿着直尺滚动一周,就量出了圆片的周长。

师:这个办法怎么样?

生:很好。

师:同学们都是用测量的方法得到了圆片的周长,归纳起来大家用了两种测量方法,一起来看:

多媒体演示,师生共同描述:可以先在圆片上作个记号,然后把圆片沿直尺滚动一周,就得到了这个圆片的周长。

还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,也就是圆片的周长。

师:这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?

生:直线。

师:是直直的线段。在数学学习中,我们经常会用到转化的方法。(板书:转化)

(评析:根据学生的学习经验和已有的知识,引导学生自主探究方法,合作测量圆的周长,既强化了学生对圆的周长意义的理解,又为后面探索圆周率打下基础。在测量交流的过程中,体会了“化曲为直”的数学思想,经历了用数学思想方法解决数学问题的过程,学生思维能力、动手操作能力和合作意识得到培养。)

师:同学们已经会用测量的方法求圆片的周长,真棒!大家请看,(课件出示)这是北京天坛公园的回音壁(图),它有一道圆形围墙;这是被称为“天津之眼”的摩天轮(图),它的框架也是圆形的,你能用刚才的方法测量出这些圆的周长吗?

生:不能。

师:为什么呢?

生1:我们没有那么长的绳子,更不可能用滚动的方法。

生2:就算我们有足够长的绳子,可是量起来太困难。

师:看来用测量的方法也能解决,可是太麻烦,那有没有简便的方法呢?

生:计算。

(评析:创设情境,感悟“围”“滚”测量圆的周长的局限性,切实体会计算圆的周长的必要性,使下面的学习有了驱动力。我们说,要以学生为主体,其本质就是学生学习内驱力的唤醒和激发。)

3.探究圆的周长计算公式

(1)探究发现圆周率的取值范围

师:怎样计算圆的周长呢?

师:大家回想一下,以前我们学过长方形、正方形的周长计算,计算长方形的周长需要知道它的长和宽,计算正方形的周长需要知道它的边长,那么大家想一想,计算圆的周长需要知道什么呢?也就是说圆的周长和谁有关呢?

生:直径和半径。

师:能说说你的理由吗?

生:因为圆的直径和半径决定圆的大小。

师:我们知道圆的直径和半径越长圆越大,那圆的周长就越长,圆的直径和半径越短圆越小,那圆的周长就越短。看来圆的周长和直径或半径的关系确实很密切,那大家来观察,你认为圆的周长与直径会有怎样的关系呢?

(大多数学生茫然,教师加以引导)

师:我们知道长方形的周长是它长、宽之和的2倍,正方形的周长是边长的4倍,那么圆的周长和直径是怎样的关系呢?

生:倍数关系。

师:请大家观察,你认为圆的周长是直径的几倍?

生:圆的周长是直径的2倍多。

师:能说说你是怎样想的?

师指图继续让生说。

生:直径把圆平均分成了2份,半个圆周的长比直径长,圆的周长是直径的2倍多。

师:通过刚才的交流,我们达成共识,圆的周长一定比直径的2倍多,(板书:2倍多)那会比几倍少呢?或者接近几倍呢?

(评析:借助已有的知识获取新知,是最高的教学技巧所在。当老师提出“怎样计算圆的周长?”这一问题时,学生感到茫然。老师引导学生回忆长、正方形的周长计算,让学生类比猜想并形成了假设:计算圆的周长需要知道什么?周长和直径有什么关系?沟通了知识间的联系,促成了迁移。)

生猜并说理由。

师:看来同学们找不到合理的依据,为了研究方便,老师给每小组提供一个圆形图片,小组同学一起来想一想、画一画、比一比,共同研究这个问题,好吗?

(老师为每组发一张画有一条直径的圆的图片,各小组进行充分的操作研究,老师参与小组活动。)

师:我发现每个小组都有自己的想法了,哪个小组先来说一说?

生1:(拿着自己研究的成果介绍)我们小组又画了一条直径,把圆等分成了四份,发现圆的周长应该是直径的四倍左右。

生2:我们小组在圆的外面画一个正方形,我们发现正方形的边长和圆的直径相等,正方形的周长是直径的4倍,圆的周长比正方形的周长短,所以圆的周长比直径的4倍少。

师:同学们真聪明,知道用以前学过的图形帮助研究新问题。圆的周长比直径的2倍多,4倍少,那你想不想知道更接近几倍呢?

生:想。

师:大家看,刚才这小组把圆等分成四份,发现圆的周长是直径的4倍左右,我们借助这种思路,再继续等分下去看能发现什么?大家看(多媒体演示:把圆等分六份)现在把圆等分成了几份?

生:六份

师:圆周角平均分成了6份,那这一个角是多少度呢?

生:60度。

师:这一个三角形是什么三角形?(课件闪烁一个三角形)

生:等边三角形。

师:那么这一条边就等于圆的半径,这一段弧和这一条边比,谁长?(课件闪烁一段弧和对应的一条边)

生:弧长。

师:也就说这一段弧比圆半径长,那圆的周长比圆半径的几倍多?

,《圆的周长》教学实录与评析

生:6倍多。

师:比圆直径的几倍多?

生:3倍多。

师:圆的周长比直径的3倍多一些,到底是几倍呢?有什么办法知道?

生:我们可以量出圆的周长和直径,用周长除以直径,算一算。

(评析:使学生经历知识的产生与形成的过程非常重要,以上外切正方形、分割圆等方法正是阿基米德、刘徽等数学家研究圆周率时所使用的,学生萌生并运用这些方法进行研究,正是我们所追求的“大数学观”。在提出问题—形成假设—猜想推理—形成结论的过程中,学生对知识的理解更加透彻,情感、态度、价值观的培养更加有效。借助课件演示,使学生感受到了极限思想。)

(2)计算圆周率的近似值

师:刚才每个小组已经测量出几个圆片的周长,下面请各小组再拿出表格,找到每个圆的直径,填在第三栏,并用计算器算出周长除以直径的商,把结果记录在表格第四栏中,除不尽的得数保留两位小数。

(小组活动,教师巡视。)

(各小组完成后,老师把各组的表格依次放在展台上。)

师:我们测量的圆的直径都不一样,周长也不一样,请同学们来观察这些周长除以直径的商,你又有什么发现?

生:都比3大。

生:圆的周长除以直径的商都是3点几。

生:都在3.2左右。(板书:3.2倍左右)

师:也就是说圆的周长总是直径的3倍多一些,这也证明我们刚才推理的结果是正确的,其实,在古今中外,有许多数学家研究过这个问题,他们经过大量的实验,已经证明圆的周长除以直径的商是一个固定的无限不循环小数,它是3.1415926……,我们把它叫做圆周率,(板书:圆周率)用一个希腊字母π来表示。(板书:π)。

师:一起读。(板书pài)

师:我们看,刚才同学们计算的圆的周长除以直径的商为什么都不是固定的数呢?

生:测量不准确,有误差。

师:很会分析问题。我们计算的商都不一样,是因为测量有误差造成的。只要测量方法正确,测量过程仔细,是可以减小误差的。

(3)介绍圆周率的历史

师:有关圆周率的历史,你想了解一下吗?

(多媒体演示,教师介绍。)

师:在我国,有关圆周率的最早记载是20xx多年前的周髀算经,当时的解决方案是测量,人们发现圆的周长总是直径的3倍多。和我们刚才测量计算的结果是一样的。

魏晋时期伟大的数学家刘徽首先采用“割圆术”得出了较精确的圆周率的值。我们刚才把圆周等分成了2份,发现圆的周长是直径的2倍多,等分成4份,发现周长是直径的4倍左右,等分成6份,发现周长比直径的3倍多一些,刘徽一直把圆等分成192份,得到了圆周率的近似值3.14。

继刘徽之后,我国南北朝时期有一位伟大的数学家和天文学家,他继续研究圆周率,并做出了杰出的贡献,你知道他是谁吗?

生:祖冲之。

师:对,祖冲之。他计算出π的值在3.1415926和3.1415927之间,是世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。你有什么感想?

生:祖冲之很伟大。

师:是啊,我们确实该为我们的祖先能有这样的伟大成就感到骄傲和自豪。

师:虽然如此,人们对圆周率的研究远没有结束。随着数学技术的发展,现在人们已经用计算机将圆周率计算到小数点后12411亿位。

师:有关圆周率的历史资料还有很多,有兴趣的同学课下继续搜集、查阅。

(评析:让学生了解自古以来人类对圆周率的研究历程,领略与计算圆周率有关的方法,从而了解数学的悠久历史和人类对数学知识的不断探索过程,感受数学的魅力,激发研究数学的兴趣。同时,结合刘徽、祖冲之研究圆周率取得的伟大成就,激发学生的民族自豪感。)

(4)推导圆周长的计算公式

师:现在我们知道了圆的周长总是直径的π倍。π是一个固定的数,知道了直径,怎样计算圆的周长。

生:圆的周长等于圆周率乘直径。

师:如果用字母C表示,那么C=?

(板书:C=πd)

师:知道了圆的直径,你会计算圆的周长,知道了圆的半径,怎样计算圆的周长?

(板书:C=2πr)

师:要计算圆的周长,只要知道什么就可以了?

生:直径或半径。

师:由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:3.14)

(评析:通过前面的探究,学生明确了圆的周长与直径的关系,进而引导学生推导圆的周长计算公式,水到渠成,深化了学生的思维。)

三、实践应用,内化提高

师:现在老师告诉你天坛回音壁的圆形围墙的直径是65米,这个摩天轮的圆形框架的半径是55米,现在你能求出它们的周长吗?

(学生独立尝试,教师巡视。)

师:谁来介绍你的计算方法?

生读题,集体订正。

(评析:利用探究得出的公式解决前面提出的实际问题,使学生体会到计算公式的简洁、实用,培养了学生解决问题的能力。)

四、回顾整理,反思提升

师:今天这节课你有什么收获?

生1:我学会了计算圆的周长。

生2:我了解了圆周率的历史。

师:这些都是大家知识上的收获,我们在获取这些知识时,通过观察圆的图形,做辅助线、等分圆等方法,首先确定了圆周率的取值范围,又通过测量计算找到了圆周率的近似值,我们还自己推导出了圆周长的计算公式,同学们真是太棒了。

(评析:数学学习,不仅是数学知识的学习,更重要的是数学思想与方法的学习。课的最后,不仅引导学生回顾了本节课学到的知识,还与学生一起回顾了解决问题的策略、方法,并对学生所做出的成绩给予情感上的激励。)

创新特色:

1、把基本活动经验和基本数学思想方法纳入本节课的重要教学目标。

数学教学不仅要重视“双基”,即基础知识和基本技能,而且要重视获得适应社会生活和进一步发展所必须的数学基本思想和基本活动经验。圆的周长这节课的设计充分体现了这一理念。本节课设计了三次探究活动。第一次探究,在“怎样求圆形纸片的周长?”这一问题的引领下,让学生利用手中的学具自主探究方法,学生根据已有的知识经验,联想到“用线围”和“在直尺上滚”的测量方法。然后教师用问题“这两种方法都是把圆的周长这条曲线巧妙的转化成了什么?”启发学生体会“化曲为直”的数学思想。第二次探究,学生已观察得出圆的周长是它直径的2倍多之后,启动问题“那会比几倍少或接近几倍呢?”学生独立思考却找不到合理的依据,感到困惑的时候,老师为每小组提供一个圆的图片,让各小组发挥集体的智慧,共同研究。第三次探究,学生已经通过观察、讨论等方法发现了圆的周长比直径的3倍多,4倍少,老师再问“那究竟是几倍呢?用什么方法才能知道?”启发学生想到计算的方法,然后请各小组在前面测量的基础上,算出圆的周长除以直径的商并观察有什么发现,得到圆周率的近似值,同时也验证了前面的推理。在三次探究活动中,学生利用已有的知识经验,基于对知识探求的欲望,主动进行操作、猜想、验证、思考与交流,经历了知识的产生与形成的过程,积累了解决数学问题的经验,获得了解决数学问题的方法。

2、促进知识的迁移

“为迁移而教”。迁移的前提是知识间存在着联系,我们要善于研究知识间的联系,促进知识的迁移,使原有的知识同化新知识。圆的周长与长、正方形的周长计算存在着联系,计算都需要一定的条件,周长与条件之间都存在倍数关系。本节课在设计时,采取了并列结合的学习方式,步步深入,使学生借助已有的知识经验,探求新的知识。

3、把数学教学看作一个整体。

本节课增加了学生猜想计算圆的周长需要什么条件,及探究圆的周长与直径倍数的取值范围,探究占用了较多的时间。四十分钟的课堂,要做到面面俱到是很困难的,让学生经历探究圆周率的过程,推导出圆的周长计算公式,这对学生来说是个了不起的收获。本节课把“使学生经历圆周率的探究过程,推导出圆周长的计算公式,”作为主要目标,因此压缩了练习的时间,把练习放在下一节,让练习课成为新授课的延伸。

3、充实、完善了教学目标。

把数学看作大数学,本节课的教学,学生不是在别人提示下通过测量计算得到的圆周率,而是引导学生借助已有的知识经验,调动学生的智慧,使学生经历前人研究圆周率的过程、所运用的方法,培养了学生的研究意识、探究能力以及数学学习的情感,而这一切,比单纯获得一个公式更为重要。因此本节课的教学目标中我们增加了“使学生经历圆周率的产生与形成过程”这一重要内容。

圆的周长教学设计篇6

一、素质教育目标

(一)知识教学点

1、认识圆的周长,知道圆周率的意义。

2、理解和掌握圆周长的计算公式。

(二)能力训练点

1、会用公式正确计算圆的周长。

2、通过引导学生探究圆周长的意义,培养学生抽象概括能力。

(三)德育渗透点

1、通过对圆的周长测量方法的探究,渗透化归思想。

2、通过介绍祖冲之在圆周率方面的研究成就,进行爱国主义教育。

(四)美育渗透点

通过演示,使学生受到美源于生活,美来自生产和时代的进步,感悟数学知识的魅力。

二、学法引导

1、引导学生操作、实验,从中发现规律。

2、运用周长公式,指导学生计算。

三、教学重点:

圆周长的计算方法

四、教学难点:

圆周率意义的理解。

五、教具、学具准备:

微机、实物投影、小黑板、系有螺丝帽的线、大小不等的圆片、铁圈、皮尺、直尺、线绳。

六、教学过程:

(一)认识圆的周长

1、创设情境

(屏幕显示)两只小蚂蚁在地上跑步,红蚂蚁沿着正方形路线跑,黑蚂蚁沿着圆形路线跑。

2、迁移类推

(1)要求红蚂蚁所跑的路程,实际上就是求正方形的什么?什么叫正方形的周长?怎样计算正方形的周长?(板书:围成)

(2)求黑蚂蚁所跑的路程,实际上就是求圆的什么?(板书并揭示课题:圆的周长),围成圆的这条线是一条什么线?(板书:曲线)这条曲线的长就是什么的长?什么叫圆的周长?(生回答,师完成板书:围成圆的曲线的长叫做圆的周长)。

3、实际感知

(1)师拿出一个用铁丝围成的圆,让学生用手摸出圆周长的那部分。

(2)让全班学生动手摸摸硬币、硬纸板、圆柱的周围,同桌之间边说边指出周长是指哪一部分的长。

(二)测量圆的周长

圆的周长是一条封闭的曲线,你能用手边的测量工具,测出圆的周长吗?你能想出几种测量方法?(学生自己动手测量硬币、圆铁圈、硬纸板等)。

学生说出测量方法:化曲为直、滚动、软皮尺测、绳绕圆一周。生边说,师边微机演示。

师:你们想的这些方法都很好,但是不是对所有的圆都能用这些方法测量出它的周长呢?请同学们看:(师捏住一头系着螺丝帽的线,用力甩出一个圆)象这个圆你能用绕线法或滚动法量出圆的周长吗?当然不能,因为只要老师的手一停,圆就消失了,那么我们能不能找出一条求圆周长的普遍规律呢?

(三)引导发现圆的周长与直径的关系:

1、圆的周长与什么有关系?

启发思考:正方形的周长与它的边长有什么关系?(周长是边长的4倍)那么圆的周长是否也与圆内的某条线段长有关,也存在着一定的倍数关系呢?

学生小组讨论后汇报结果。

微机演示:用三条不同长度的线段为直径,分别画出三个大小不同的圆,并把这三个圆同时滚动一周,得到三条线段的长分别就是三个圆的周长。

引导学生观察,生说出观察结果,从而得出:圆的周长与直径有关系。

2、圆的周长与直径有什么关系?

(1)测量计算

小组合作,分别量出几个圆形物体的周长和直径,并计算出周长和直径的比值,结果保留两位小数,并把相应的数据填在89页的表格中。

请同学汇报所填数据。

观察这些数据,能发现什么呢?

生概括出:每个圆的周长是它直径的3倍多一些。

(2)媒体演示:

屏幕上大小不同的三个圆及三个圆的周长(化曲为直的线段),用每个圆的直径分别去度量它的周长,得出:大小不同的三个圆,每个圆的周长还是它直径的3倍多一些。

(3)引导概括

其实,任何一个圆的周长都是它的直径的3倍多一些。这就是圆的周长与直径的关系。

3、介绍圆周率和祖冲之在圆周率研究方面所作出的贡献。

表示这个3倍多一些的数是一个固定不变的数,我们把圆的周长与直径的比值,叫做圆周率。(板书:圆的周长和直径的比值,叫做圆周率。)用字母π表示。

教学生读写π,介绍π在计算时如何取值。

学生自己读书中介绍祖冲之的一段知识。

(四)归纳圆的周长的计算公式。

学生讨论:

(1)求圆的周长必须知道哪些条件?

(2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

生回答,教师板书:C=πd?或C=2πr

(五)应用圆周长计算公式,解决简单的实际问题。

小黑板出示例1:一张圆桌面的直径是0、95米,这张圆桌面的周长是多少米?(得数保留两位小数)

指名读题,自己列式解答(1生板演)

(六)订正时教师强调说明:

(1)解答时不必写出公式。

(2)π取两位小数,计算时就不再看成近似的数了。

(3)计算中取近似值的那一步要用“≈”表示。

完成例1下的做一做,实物投影订正。

(七)看书质疑,全课小结。

(八)课堂练习

1、判断正误,并说明理由。

(1)圆的周长是直径的3、14倍。?()

(2)大圆的圆周率比小圆的圆周率大。()

(3)π=3、14?()

2、求下面各图的周长(只列式不计算)

3、求下面各圆的周长

(1)d=2米?(2)d=1。5厘米(3)d=4分米

r=6分米r=3米r=1。5厘米

分三组进行解答,订正时强调单位名称。

4、解答简单应用题

(1)一个圆形花池,直径是4。2米,周长是多少?

(2)一个圆形牛栏的半径是12米,要用多长的粗铁丝才能把牛栏围上3圈?(接头处忽略不计)

(3)一种压路机的前轮直径是1。32米,前轮的周长是多少米?如果前轮每分转6周,它每分钟前进多少米?(得数保留整米数)。

(九)课后练习

量一量家中自行车轮胎的外直径,计算它滚动一周前进多少米?

圆的周长教学设计篇7

教具、学具准备:

多媒体课件、直尺、细绳、圆片、学生准备生活中的圆形物品等。

教学过程:

一、认识圆的周长

1.情境导入。

师:同学们,看过《米老鼠和唐老鸭》吗?

师:今天钱老师把这两位“巨星”请到了我们的课堂,咱们鼓掌欢迎它们的到来好不好?

(生齐鼓掌!)

师:看,米老鼠和唐老鸭在跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。到底谁跑得路程长呢?(屏幕动画显示)

2.迁移类推

师:(让学生自由发言后说明)究竟它们谁跑得路程长?如果给你有关数据你能裁定谁跑得路程长吗?

(1)师:谁来说说要求唐老鸭所跑的路程,就是求什么?(就是求正方形的周长。)

(2)师:谁再来说说什么叫正方形的周长?你会求正方形的周长吗?

(围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长×4。)

师:知道边长×4的含义吗?(正方形的周长与它的边长有关系,周长是边长的4倍。)指名说。

(3师:要求米老鼠所跑的路程,实际上就是求圆的什么呢?(圆的周长)

师:很好!那什么叫圆的周长,又怎样计算圆的周长呢?这节课我们就来研究这个问题,愿意吗?

(板书课题:圆的周长)

(4)师:我们已经知道,圆是由一条曲线围成的平面图形,这条曲线的长就是圆的周长。

师:谁能概括一下,什么叫做圆的周长呢?小组讨论后指名答。

(完成板书:围成圆的曲线的长叫做圆的周长)

师:(出示一教具圆片)谁来说说这个圆的周长就是指哪一部分的长?指名学生边演示边说。谁再来说说。

3.实际感知

师:请同学们拿起圆形纸片,小组之间互相指一指、说一说圆片的周长。

二.测量圆的周长

1.师:正方形、长方形的周长很容易尺量计算,大家猜猜圆的周长用尺量计算方便吗?(不方便)

师:(出示教具圆片)那有什么办法呢?在小组内讨论一下。量出一号圆的周长,并把数据填写在实验报告单相应的表格中。听明白了吗,开始。(小组活动)

2.小组汇报:(预设)

(1)师:哪个小组愿意来汇报?

方法一:用线绕

师:谁来与老师配合绕给同学们看看?

(师生合作用绕线的方法去测量圆周长)

师:这样绕了以后,怎么就知道了圆的周长呢?(生说明)

师:(课件补充说明)用线绕圆一周以后,捏紧这两个正好连接的端点,把线拉直,这两点之间线的长就是什么……?(圆的周长)

(2)师:除此以外,还有别的方法吗?

方法二:把圆放在直尺上滚动一周。

师:(课件演示)请看大屏幕,在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿着直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是什么……?(圆的周长)

(3)师:现在老师给你一个圆,你会测量它的周长呢?(会。)

师:真的吗?谁敢来试试。

指名一生上台测量黑板上的圆。可能用线绕。

师:有什么感觉?(不方便!)

师:那你可以把它搬下来滚动呀!

这就说明用绕或滚这两种方法测量圆的周长,有时还很不方便。这就需要我们探讨出一种求圆周长的普遍方法。

三、引导学生发现圆的周长和直径之间的关系

1.猜测

师:正方形的周长与它的边长有关,周长是边长的4倍,圆的周长是否也与圆内某线段长有关系呢?(半径、直径)

2.验证

师:谁知道圆的大小是由什么来决定的吗?(半径或直径)

师:圆的周长是不是和直径有关呢,请同学们来观察几个圆。(媒体演示)

师:哪个圆的直径最长?哪个圆的周长最长?哪个圆的直径最短?哪个圆的周长最短?

师:你感觉到了吗?

(圆的直径越长,周长越长;圆的直径越短,周长越短。)

师:这就说明圆的周长肯定与圆的什么有关系?

(圆的周长与直径有关系。)

师:圆的周长与直径到底有什么关系呢?这个问题要同学们自己去发现。现在请小组内相互分工一下,每位同学测量一个圆片的直径,并计算出你那个圆片的周长除以直径所得的商,得数保留两位小数,并把数据填写在相应的表格中。

(生实际测量、计算、填表)

3.展示汇报

师:哪一个小组愿意来汇报你们的数据。

师:从他们汇报的数据看,同学们发现了什么吗?(商都是三点一几)

师:也就是每个圆的周长大约是它直径的3倍多一些。其他小组的也是这样吗?

4.揭示规律

师:这就说明圆的周长除以直径的商肯定是有规律的。在我们所测量的这些圆中,每一个圆的周长都是它直径的3倍多一些!

屏幕出示图3:

师:在这三个圆中,不管是大圆还是小圆,每一个圆的周长也是它直径的3倍多一些。如果再换成其它的圆来度量或者计算的话,同学们还会发现,它们每一个圆的周长仍是它直径的3倍多一些。谁可以用一句话来概括圆的周长与它直径的关系?

(圆的周长总是它直径的3倍多一些)

师:这就是圆的周长与直径的关系。这个表示3倍多一些的数,其实是一个固定的数,我们称它为圆周率。圆周率用字母"π"(读pài)表示。

5.介绍小知识。

师:讲到圆周率,我们不得不提到祖冲之。(媒体介绍祖冲之及圆周率的有关知识,增强了感染力,使学生受到良好的爱国主义教育。)

五、揭示圆的周长计算公式

师:圆的周长总是直径的π倍,想要知道这个圆的周长,其实我们只要测量出什么就可以了?

(测量出它的直径)

师:那么已知这个圆的直径该怎样求它的周长呢?(用直径去乘圆周率)

师:说得不错!(课件演示并教学用字母表示公式C=πd的过程)

(板书:C=πd)

师:如果已知圆的半径r,可以怎样计算圆的周长呢?你是怎样计算它的周长呢?你是怎样想的?

(板书:C=2πr)

练习:(屏幕显示)现在你能裁定米老鼠和唐老鸭谁跑的路程长了吗?

学生独立计算。汇报:唐老鸭跑的路程更远。

六、应用圆周长计算公式,解决简单的实际问题.

1.教学例题:一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

(课件出示)

(1)学生独立完成,汇报,弄清列式的依据。

(2)小结:已知直径求周长可直接套用公式。

2.通过媒体演示指导学生完成"做一做"作业。

饭店的门口竖着一个大钟,它的分针长30厘米。这根分针的尖端转动一周所走的路程是多少?

小结:已知半径求周长只要先用半径乘以2求出直径,再乘以圆周率,写成公式是:C=2πr.

五、总结,质疑,看书内化。

师:同学们,通过这节课学习你有哪些收获呢?谈谈这节课的体会与感受。

六、巩固练习。

1.判断。

(1)圆周率就是圆的周长和直径的比值。

(2)π=3.14。

(3)半径的长短决定圆周长的大小。

(4)同圆中,周长是直径的π倍。

2.一个圆形牛栏的半径是12米。要用多长的铁条才能把牛栏围上3圈(接头处忽略不计)?

3.杂技演员表演独轮车走钢丝,车轮的直径为40厘米,要骑过31.4米长的钢丝,车轮要转动多少周?

4.求半圆的周长:d=6厘米(图略)

圆的周长教学设计篇8

教学内容:圆的周长

内容分析:通过帮助学生回忆周长的概念,引出圆周长的概念;接着引出本课研究的问题:圆的周长和直径的关系,通过学生的动手实践活动,得出圆的周长是直径的3.14倍,给出圆周长的计算公式,并介绍了祖冲之和圆周率,最后运用周长公式,加深对公式的理解。

学生起点:对圆和周长的概念已有初步的认识

教学目标:1、理解圆周长的概念,理解圆周率的意义。

2、使学生掌握圆周长的计算公式及公式的推导过程。

3、以自主探究、小组讨论、合作的形式,培养学生观察、分析和解决问题的能力。

4.结合圆周率的由来,了解祖冲之的故事,对学生进行爱国主义教育。

教学重点:圆周长公式的推导。

教学准备:直尺;两个有厚度、标明直径、不同规格的圆片;棉线。

教学流程:

一、复习引入

1、学生说圆的认识;

(你对圆的知识有哪些了解)

2、揭示课题:

今天我们要一起来学习圆的周长。(板书:圆的周长)

二、新授

1.认识圆的周长;

(1)师拿出圆片让学生指出圆的周长;

(哪一部分是圆的周长)

(2)描出两个规格不同的圆的周长;感受圆的周长;

(请你描出练习纸上两个圆的周长。)

(哪一个周长长?)

(3)揭示圆周长的概念;

(用自己的话说说什么是圆的周长)

师小结:围成圆的曲线的长叫做圆的周长;

围成圆的一周的长叫做圆的周长。(幻灯出示)

2、理解、运用圆周长的测量方法。

师问:圆的周长长短不一,该怎么测量?

生边演示测量圆片周长,边介绍绳测法。

要求学生测量出两个圆片的周长,并把周长和相应的直径填入记录单中。

学生汇报测量结果,师记录。

圆片测量记录单:

3.探究圆的周长与直径的关系。

(1)猜测跟圆周长相关的量;

(猜测一下,圆的周长长短跟什么量有关?)

计算记录单中周长与直径的比值,得数保留两位小数;

学生反馈比值;

周长(厘米)

直径(厘米)

周长与直径的比值(得数保留两位)

(2)认识圆周率

①揭示圆周率:周长与直径的比值都是3倍多一些,其实这个比值是个固定不变的,我们称它为圆周率,用π表示。

(板书:圆周率π)

②幻灯片展示圆周率的由来,学生自主阅读;

总结圆周长的计算公式。

①是不是所有圆的周长都需要经过测量而得到呢?有没有较好的计算方法?

提示:从测量记录单中找取。

②如果周长用C表示,字母式是怎样的?

③周长跟半径又是怎样的关系呢?字母式呢?

(板书:圆周长=圆周率×直径C=πd或

圆周长=2×圆周率×半径C=2πr

三、巩固练习

基本练习

一个圆的直径是10米,它的周长是多少?一个圆的半径是10米,它的周长是多少?判断。

只要知道圆的直径或半径就可以计算圆的周长。()大圆的圆周率大,小圆的圆周率小。()圆周率的值就是3.14.()4圆的周长是直径的倍。()能力拼比:

两个小朋友同时同速从A点到B点,谁先到达?

B

A

四、总结:学习了这堂课你有哪些收获?

圆的周长教学设计篇9

教学内容:

人教版《义务教育课程标准实验教科书数学》六年级上册第三单元《圆》62-64页的内容。

教学目标

1、使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。

2、通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法;通过小组合作学习,培养学生的合作意识。

3、通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。

教材分析:

《圆的周长》是六年级数学上册第三单元62至64页的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。

学情分析:

因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,我注重从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。

教学重点:正确计算圆的周长。

教学难点:理解圆周率的意义,推导圆的周长的计算公式。

教学准备:一套多媒体课件、若干大小不同的圆片、一把直尺、一根绳子、一个计算器

教学过程:

(一)创设情境,提出问题。

师:同学们,20xx年是中国人扬眉吐气的一年,因为上海世博会的成功举办让我们有足够的理由为之骄傲和自豪。虽然世博会已经于10月31日完美落幕,但是,这场规模空前的`盛会却创造了7308万人次参观的新纪录。其中,中国馆是众多展馆中的一朵奇葩,深受游客们的喜爱,它的外观好像古代的一顶帽子,因此又被称为“东方之冠”。此外,城市地球馆也得到了中小学生的青睐。同学们,瞧,这是地球馆中的地球模型,它叫“蓝色星球”。如果杨老师绕着它的最大横截面走一圈,大约走多少米呢?(板书课题:圆的周长)

【设计意图:上海世博会这个情境的创设是为了突破教材,以学生的兴趣作为出发点,使学生对新知识的学习充满了热情和渴望,激发学生的探索欲望,为后面的学习做好铺垫。】

(二)自主学习,探究新知。

1、自主探究

(1)熟悉圆的周长的概念。

师:既然求大圆的周长没有好办法,那么我们就把小圆片做为研究对象。同学们,你能自己先摸一摸圆的周长吗?然后用自己的话说一说什么是圆的周长。

(找个别学生示范)

生:圆的周长是指圆一周的长度。

(2)测量圆的周长。

要求学生先独立思考有几种方法,再尝试用自己喜欢的办法去测量圆的周长。

【设计意图:培养学生养成独立思考的思维习惯,提高学生的动手操作能力。】

2、合作交流

在四人小组内交流方法。

【设计意图:小组合作旨在增强学生的合作意识,在此过程中,通过不断的交流、质疑,实现思想的碰撞与思维方式的互补,也使学生逐渐养成学会倾听的好习惯,并在聆听的过程中学会“取”和“舍”,即学会分析。】

3、汇报展示

学生汇报展示滚动法和绳绕法,教师点评:同学们,刚才有的同学用绳子绕圆片一周,这种方法属于绳绕法。还有的学生把圆片沿直尺滚动一周,这种方法我们称之为滚动法。无论是滚动法还是绳绕法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。(板书:化曲为直)同学们展示的方法里面一定有你最欣赏的,那么就请大家用你们最欣赏最喜欢的方法同桌合作测量圆的周长,并把测得的数据直接写到圆上。

【设计意图:通过个别学生的展示,使学生深切地体会到“化曲为直”的数学思想方法,从而突出重点,突破难点。】

教师质疑:这些小圆我们可以用类似的方法来测量圆的周长,那么“蓝色星球”最大横截面的周长,再比如赤道的长度,还能用以上这些方法吗?

生:不能。

【设计意图:再次把学生带回课堂伊始的情境中,在质疑中激发学生的学习兴趣,并促使他们产生探究一般方法的迫切愿望。】

4、猜想验证

师:圆的周长与什么有关呢?

生1:与直径有关。

生2:圆的周长与半径有关。

师:孩子们,因为在同一个圆里半径是直径的一半,与半径有关也就是与直径有关,因此这节课我们先来讨论圆的周长与直径的关系。

(2)探讨圆的周长与直径的关系

①小组合作

要求学生以四人小组为单位,由小组长负责分配任务,两人合作测量直径与周长,一人用计算器计算圆的周长与直径的比值,第四个人把相关数据按要求填入表格中。补充完整后,看看有什么发现。

周长直径周长与直径的比值(保留两位小数)

1号圆片

2号圆片

3号圆片

4号圆片

②学习“圆周率”

师:同学们,由于各种原因,不同的圆计算出的周长与直径的比值可能不完全相同,但实际上,这个比值是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)

(3)渗透数学文化

师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【找学生介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】听完了刚才两位同学的介绍,你能谈谈自己的想法吗?

【设计意图:数学文化的渗透是为了激发学生的爱国情怀,从小培养学生的民族自豪感。】

5、推导公式

师:同学们,刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?

生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)

师:你能用字母表示圆的周长计算公式吗?

生:C=πd。(板书公式:C=πd)

师:如果已知半径呢?

生:C=2πr。(板书公式:C=2πr)

师:为什么呢?

生:因为直径是半径的2倍。

师:孩子们,就让我们带着满满的收获,再次看看“蓝色星球”吧!已知“蓝色星球”最大的横截面的直径是32米,如果杨老师绕着它的最大横截面走一圈,大约走多少米呢?要求大家先认真审题,然后把你的过程写到练习本上。

【设计意图:再次回到蓝色星球的情境中,运用新的知识解决问题,首尾呼应,使整节课完整而有序。】

(三)巩固新知,解决问题

1、世博会不仅汇聚了各具特色的展馆,还有一些纪念品也给游客留下了深刻的印象,比如这款金镶玉挂件,其中玉的半径是1.5厘米,如果在玉的一周镶一层金边,那么需要多长的金边?

2、菲利斯大转盘每节车厢旋转一周大约是251.2米,那么它的直径是多少米?

3、课件上所展示的是世博会众多花圃中的一个,如果给这个花圃加上栅栏,需要几米长的栅栏?

【设计意图:这三道习题是从基础练到拓展练的跨越,让学生在掌握了新内容的基础上,用所学的知识来解决生活当中的实际问题,培养学生的应用意识。】

结束语:同学们,虽然我们没有以设计者的身份参与到世博会的建设中,但是我们可以做自己人生的设计师,去建设属于你们的美丽新世界。

板书设计:

圆的周长

化曲为直

圆的周长=直径×圆周率π≈3.14

C=πd或C=2πr

课后反思:

本课的教学设计以上海世博会作为一条主线,贯穿课堂的始终,体现在以下四个方面:首先,在创设情境时,我在理解教材的基础上,激活教材,创造性地使用教材,以学生的兴趣作为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我向学生提出质疑,以相同的方法测量赤道的长度,在质疑中激发学生的学习兴趣,并促使学生产生探究一般方法的迫切愿望。第三,学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,第三次回到情景中,使学生在掌握新内容的基础上,解决实际问题,培养学生的应用意识。最后,在巩固新知解决问题的环节中,以世博会为背景,设计了三道不同层次的练习题,这三道题实现了从基础练到拓展练的跨越,提高学生发现信息、解决问题的能力。

圆的周长教学设计篇10

教材分析:

《圆的周长》是六年级数学上册第一单元的内容。这部分内容是在三年级上册学习了周长的一般概念以及长方形和正方形周长的计算的基础上进一步学习圆的周长的,同时它又是学生初步研究曲线图形的开始,为以后学习圆柱、圆锥等知识打好基础,因而它起着承前启后的作用,是小学几何初步知识教学中的一项重要内容。

学情分析:

本节课是在学生掌握了关于长方形,正方形周长的计算方法,也认识圆的各部分名称,知道半径,直径的关系并且会画圆,能测量出圆的直径的基础上进行教学的,前面的知识为这节课的学习活动做好了铺垫。因为六年级学生正在经历从具体形象思维向抽象逻辑思维过渡的时期,所以在教学中,应从学生已有的知识和生活经验出发,通过自主探究、猜测验证、推导圆的周长计算公式,从而使学生理解公式中的固定值“π”是如何得来的。

教学目标:

1、知识与技能目标:使学生认识圆的周长,掌握圆周率的意义和近似值,初步理解和掌握圆周长的计算公式,能正确计算圆的周长。

2、过程与方法目标:通过动手操作、实践探究的活动,培养和发展学生的空间观念,提高学生的抽象概括能力,渗透“化曲为直”的数学思想方法。

3、情感、态度与价值观目标:通过渗透数学文化,培养学生的爱国情怀,激发学生的民族自豪感。

教学重点:推导圆的周长的计算公式。

教学难点:理解圆周率的意义。

教学过程:

一、创设情境导入新课

在动物王国里,两只小蚂蚁正在进行赛跑,甲乙连只蚂蚁分别沿着正方形和圆形跑一圈,谁跑的路程长?为什么?

圆的知识系列微课(四)《圆的周长》教学设计

甲蚂蚁跑的路程:4×2=8(厘米)

要求乙蚂蚁跑的路程,就要求出圆的周长。

从图上可以看出:圆的周长就是圆一周曲线的长度。这节课我们就来研究圆的周长。

二、实践操作探究新知

1、测量圆的周长

怎样测量圆的周长呢?

方法一绳测法:用绳子绕圆一周,测出绳子的长度。

方法二滚测法:把圆在直尺上滚动一周,做上记号,量出圆的周长。

利用课件展示两种测量方法。

小结;无论是滚动法还是绳绕法,大家都是把我们没学过的圆的周长转化为一条线段,这是一种很重要的数学思想方法——化曲为直。

2、探究周长与直径的关系:

(1)猜想:圆的周长与什么有关呢?

(2)测量圆的周长与直径,并填表

周长

直径

周长与直径的比值(保留两位小数)

1号圆片

2号圆片

3号圆片

(3)观察表格:你发现了什么?

圆的周长总是直径的三倍多一些。

(4)介绍圆周率:圆的周长与直径的比值是一个固定不变的数,通常我们称之为“圆周率”,用希腊字母“π”来表示,“π”是一个无限不循环小数,为了计算方便,一般我们只取它的近似数π≈3.14。(板书:圆周率,π≈3.14)

(5)渗透数学文化

师:孩子们,不仅我们发现了圆周率,古人们同样用自己的智慧得出了圆周率的值是多少。【介绍《周髀算经》中与圆的周长相关的内容以及我国古代伟大的数学家和天文学家祖冲之的故事。】

3、推倒圆的周长计算公式:

刚才我们已经知道了圆的周长始终是直径的π倍,而且知道了圆周率是个常量,如果已知直径,怎样求圆的周长呢?

生:圆的周长=直径×圆周率。(板书:圆的周长=直径×圆周率)

用字母表示圆的周长为;C=π或C=2πr

三、实际应用解决问题

乙蚂蚁爬过的路程为:3.14×2=6.28(cm)

8cm﹥6.28

甲蚂蚁爬过的路程长。

四、回顾全课归纳总结

这节课你有什么收获?

五、板书设计:

圆的周长

化曲为直

圆的周长=直径×圆周率π≈3.14

C=πd或C=2πr

【圆的周长教学设计(整理10篇) 】相关文章:

中学生心理健康活动课教学设计(整理10篇) 2024-04-01

圆的周长教学设计(整理10篇) 2024-04-01

小学生心理健康课的教学设计(整理5篇) 2024-04-01