探索勾股定理范文篇1
关键词:勾股定理教学方法实际运用
中国最早的一部数学著作――《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。故禹之所以治天下者,此数之所由生也。”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。在教学中反思如下:
一、通过教学“勾股定理”的学习,培养学生学习数学的浓厚兴趣
在教学中我是这样引入新课的:教师用多媒体课件演示FLASH小动画片:“某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?”这样的问题设计有了一定的挑战性,其目的是为了激发学生的探究欲望,引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了这节课的内容后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,把生活与学习数学紧密结合起来,从而提高了学生学习数学的兴趣。
新课标要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。
二、教学过程中,转变师生角色,让学生自主学习
学生学会了数学知识,却不会解决与之有关的实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当今课堂教学存在的普遍问题,对于学生实践能力的培养非常不利的。“教师教,学生听,教师问,学生答,教室出题,学生做”的传统教学摸模式,已严重阻阻碍了现代教育的发展。这种教育模式,不但无法培养学生的实践能力,而且会造成机械的学习知识,形成懒惰、空洞的学习态度,形成数学的呆子,就像有的大学毕业生都不知道1平方米到底有多大?因此,新课标要求老师一定要改变角色,变主角为配角,把主动权交给学生,让学生提出问题,动手操作,小组讨论,合作交流,把学生想到的,想说的想法和认识都让他们尽情地表达,然后教师再进行点评与引导,这样做会有许多意外的收获,而且能充分发挥挖掘每个学生的潜能,久而久之,学生的综合能力就会与日剧增。
三、学习“勾股定理”,让学生体会数形结合的思想
教学中教师关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;同时关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理.注意引导学生体会数形结合的思想方法,培养应用意识。勾股定理描述的是直角三角形的三边关系,应用勾股定理的前提是这个三角形必须是直角三角形。应强调通过图形找出直角三角形三边之间的关系,要从代数表示联想到有关的几何图形,由几何图形联想到有关的代数表示。
四、学与用结合,体会到“勾股定理”在生活中的实际运用
探索勾股定理范文篇2
关键词:勾股定理初中数学教学数形结合
勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形中非常重要的性质。它揭示了三角形三条边之间的数量关系,是解决直角三角形问题的主要根据之一,它在实际生活中用途广泛。新课改强调培养学生的动手能力和探究能力,通过实际操作与探究活动,使学生获得较为直观的印象,从而掌握勾股定理,以利于正确地运用。
一、通过引趣设疑,引发学生探究勾股定理
在教学中教师可通过导入课外有趣的内容,作为课堂教学的切入点。例如:在地球之外的浩瀚宇宙中,到底有没有外星人?如果有,我们如何与他们联系?著名的数学家华罗庚就曾建议,让宇宙飞船带着几个数学图形飞到宇宙空间,其中一个就是边长为3∶4∶5的直角三角形,你知道华罗庚为什么会提出这样的建议?等等。通过一系列的问题,激发学生的兴趣,抓住他们的注意力。原来古老的勾股定理,竟然成为了地球与外星人的联络密码。这样学生就会在感叹人类古老文明的同时,更加体会到学习勾股定理的重要性。也可以通过一系列生活中随处可见的直角三角形的实例,引起学生的关注。如给学生讲一个故事:相传在2500年前,数学家毕达格拉斯在他的朋友家做客时,发现朋友家的地面砖能反映直角三角形三边的某种数量关系。这个小故事让学生懂得,科学家的伟大发明都是在看似平淡的现象中发现的。数学知识来源于现实生活,只要我们学会观察与思考,就能激发学生的学习兴趣。
二、学习勾股定理,体会数形结合的思想
新课改强调,数学教学要看学生能否在活动中积极思考与探究,能否探索出解决问题的办法,能否进行积极的联想,以及学生能否有条理地表达探究过程与获得的结论等。也可以鼓励学生用拼得的正方形来验证勾股定理,引导学生体会数形结合的思想方法,培养数学应用意识。勾股定理描述的是直角三角形的三边之间的关系,应用勾股定理的前提是这个三角形必须是直角三角形。要强调通过图形找出直角三角形三边之间的关系,要从代数表示联想到几何图形,由几何图形联想到代数表示。勾股定理是人们在实践中通过图形的分割,并探讨图形之间面积的关系过程中总结出的规律。教学中要引导并鼓励学生多动手探索,体验数学活动充满着探索与创造。按课本中的方法证明这个定理,例如:用四个全等的直角三角形拼成正方形,大正方形面积可以表示为(a+b)2,四个全等的直角三角形的面积+小正方形的面积=c2+2ab,得出(a+b)2=c2+2ab,化简可得a2+b2=c2。我们还可以把公式变形为:a2=c2-b2或b2=c2-a2,于是可知在直角三角形中已知两边可求出第三边。
三、拓宽学生视野,但弱化对定理的发现
对于勾股定理的发现,我们认为应该做弱化处理,没有必要让学生在此太花精力引导学生探究怎样发现勾股定理的。如果处理得不当,很容易导致学生盲目地探究。在实际教学中,教师虽有探究式教学的理念,但在设计上存在着困惑:通过度量直角三角形三条边的长,计算它们的平方,再归纳出a2+b2=c2,由于得到的数据不总是整数,学生很难猜想出它们的平方关系。所以,教师常常把勾股定理作为一个事实告诉学生。如何处理这一困惑,一条途径就是教科书直接把勾股定理呈现在学生面前,而更多地把空间留给介绍与勾股定理相关的数学史料上,借此拓宽学生的视野。第二条途径是参考顾泠沅、王洁等人的结论:运用“脚手架”理论,通过“工作单”进行铺垫,为学生的学习提供一种教学协助,帮助学生完成在现有能力下对高认知学习任务的难度的跨越。这样的处理也具有一定的可行性。不过大多数人更倾向于第一条途径,弱化发现,而强化证明,重视应用,把重点放到定理的证明与应用上,这样也许对学生的思维更有利。
四、注重数形结合,实现教学方式的转变
学了数学却不会解决实际问题,造成了知识学习和知识应用的脱节,感受不到数学与生活的联系,这是当前初中数学教学的现状,教学中到处充斥着过量的、重复的题目训练。真正的教学应该关注学生学习的过程。首先要关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积极思考,能否探索出解决问题的方法,能否进行积极的联想(数形结合),以及能否有条理地表达活动过程和所获得的结论等。其次要关注学生学习的知识性及其实际应用。教学主要目的是掌握勾股定理,体会数形结合的思想。现在的情况是学生知道了勾股定理而不知道在实际生活中如何运用勾股定理。因此在学生了解勾股定理以后,不妨出一个类似于《九章算术》中的应用题,例如:在平静的水面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖与水面平齐,已知水草移动的水平距离为6分米,问这里的水深是多少?教学方式的转变在关注知识形成的同时,更加关注知识的应用,特别是所学知识在生活中的应用,真正起到学为所用的作用。
参考文献:
[1]鲍建生.课堂教学视频案例的研究与制作[M].上海:上海教育出版,2009.180.
探索勾股定理范文篇3
二、探索性学习不可或缺的题材
数学新课程理念下的数学学习将大量采用操作实验、自主探索、大胆猜测、合作交流、积极思考等活动方式。而勾股定理是
三、通过勾股定理的欣赏与应用,接受文化的洗礼与熏陶,体会数学独特的魅力
勾股定理是一条古老的数学定理,不论哪个国家、民族,只要是具有自发的(不是外来的)古老文化,他们都会说:我们首先认识的数学定理就是勾股定理。在西方文献中,勾股定理一直以古希腊哲学家毕达哥拉斯(Pythagoras,约前580-约前500)的名字来命名,称为毕达哥拉斯定理。更有趣的是我国著名数学家华罗庚教授在《数学的用场和发展》一文中谈到了想象中的首次宇宙“语言”时,就提出把“数形关系”(勾股定理)带到其它星球,作为地球人与其它星球上的“人”进行第一次“谈话”的语言。可以说勾股定理是传承人类文明的使者,是人类智慧的结晶,是古代文化的精华。因此,世界各国都非常重视勾股定理的社会文化价值,许多国家还发行了诸多勾股定理的相关邮票。
【探索勾股定理(收集3篇) 】相关文章:
逛超市日记精选[15](整理9篇) 2024-06-19
端午节日记精选(整理8篇) 2024-06-19
[精选]三年级日记(整理5篇) 2024-06-18
绿豆观察日记[精选](整理9篇) 2024-06-16
我的日记精选(整理6篇) 2024-06-15
[精选]小学三年级日记(整理3篇) 2024-06-14
[精选]小学生日记(整理9篇) 2024-06-13
学护理专业心得体会(整理3篇) 2024-06-20
探索勾股定理(收集3篇) 2024-06-20
廉洁文明家风心得(整理1篇) 2024-06-20