纳米技术的优缺点篇1
关键词:单壁碳纳米管;多壁碳纳米管;差异
中图分类号:TQ342.7文献标识码:A文章编号:1000-8136(2012)09-0014-02
碳纳米管是一维纳米材料,可称为纳米材料之王,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。碳纳米材料在纳米材料技术开发中举足轻重,它将影响到国民经济的各个领域,是国际上研究的热点及难点。
碳纳米管按照石墨烯片的层数简单分类为:单壁碳纳米管和多壁碳纳米管。此外二者还有其他差异,现综述如下:
1发现时间
单壁碳纳米管:1993年S.Iijima[1]等和DS.Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。
多壁碳纳米管:1991年日本NEC公司基础研究实验室的电子显微镜专家Iijima[2]在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,现在被称做的“Carbonnanotube”,即碳纳米管,又名巴基管。Iijima发现的碳纳米管最小层数为2,含有一层以上石墨片层的则称为多壁碳纳米管。
2结构
单壁碳纳米管:由单层圆柱型石墨层构成,其直径大小的分布范围小、缺陷少,具有较高的均匀一致性。SWCNTs的直径一般在1~6nm,目前观察到的SWCNT的最小直径约为0.33nm,并已能合成直径0.4nm的SWCNTs阵列,直径达6nm的SWCNTs也已有报道。一般认为,SWCNT的直径大于6nm以后特别不稳定,容易发生SWCNT管的塌陷。而单壁碳纳米管的长度则可达几百纳米到几十微米。单壁碳纳米管的单层结构显示出螺旋特征,根据构成碳纳米管的石墨层片的螺旋性,可以将单壁碳纳米管分为非手性(对称)和手性(不对称)。
多壁碳纳米管:多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。多壁碳纳米管的层间距约为0.34nm,外径在几个纳米到几百纳米,而已发现的最小内径为0.4nm。其长度一般在微米量级,最长者可达数毫米。
3工艺制备
单壁碳纳米管:激光蒸发法是制备单壁碳纳米管的一种有效方法。用高能CO2激光或Nd/YAG激光蒸发掺有Fe、Co、Ni或其合金的碳靶制备单壁碳纳米管和单壁碳纳米管束,管径可由激光脉冲来控制。Iijima等发现激光脉冲间隔时间越短,得到的单壁碳纳米管产率越高,而单壁碳纳米管的结构并不受脉冲间隔时间的影响。用CO2激光蒸发法,在室温下可获得单壁碳纳米管,若采用快速成像技术和发射光谱可观察到氩气中蒸发烟流和含碳碎片的形貌,这一技术使得跟踪研究单壁碳纳米管的生长过程成为可能。激光蒸发(烧蚀)法的主要缺点是单壁碳纳米管的纯度较低,易缠结。
多壁碳纳米管:化学气相沉积法主要用于多壁碳纳米管的合成。其基本原理为含有碳源的气体(或蒸气)流经催化剂表面时分解,生成碳纳米管。常用的碳源气体有C6H6、C2H2、C2H4等。Yacaman等最早采用25%铁/石墨颗粒作为催化剂,常压下700℃时分解9%乙炔/氮气制得碳纳米管。Amelincks等采用Co为催化剂,乙烯为碳源得到螺旋状的碳纳米管,中国科学院物理所用化学气相沉积法大批量合成了排列整齐的碳纳米管,而且端口是打开的。
4应用及性能(电容)
单壁碳纳米管:能够严重破坏大肠杆菌等细菌的细胞壁,从而将它杀灭,将有助于解决细菌抗药性这一日益突显的问题。单壁碳纳米管其电容量一般为180F/g,比多壁碳纳米管更高。其电容器功率密度可达20kW/kg,能量密度可达7W?h/kg。
多壁碳纳米管:没有相关的报道指明可以杀灭细菌。多壁碳纳米管其电容量一般为102F/g。
以上是关于单壁碳纳米管和多壁碳纳米管一些差异性的概括,然而二者均具有优异的力学性能、导电性能、热学性能、储氢性能等。
碳纳米管作为最重要的纳米材料之一,其研究越来越得到人们的高度重视,人们相信,碳纳米管在工业领域里大规模应用将在未来几年中出现,碳纳米管的研究也将对纳米技术的未来产生重大影响。
参考文献:
[1]Single-shellcarbonnanotubesof1-nmdiameter.IijimaS,Nature,1992,363:603~605.
[2]Helicalmicrotubulesofgraphitecarbon.IijimaS,Nature,1991,354:56~58.
纳米技术的优缺点篇2
其中,我国缺粮的省份主要集中在经济发达、人口稠密的珠三角、长三角等沿海省份。相关统计显示,上海、北京、天津、广东、浙江、福建、青海、海南成为最缺粮的8个省市,广东省统计局曾《2007年广东农业农村经济情况及2008年展望》称,广东粮食自给率不足40%,年缺口达2400万吨,需要从湖南、江西、广西等省份调配,是内地第一缺粮大省。
此外,作为广东最主要粮食调入来源地湖南,大米正面临着重金属污染的威胁。这使得广东人忧心忡忡,怎么解决安全大米的来源问题,成为让当地政府头疼的问题。还记得,上世纪90年代中期,“广东粮”名噪一时,以金源米业为代表的一批沿海地区加工企业开创了国内大米品牌建设的先河。之后,伴随改革开放的步伐,珠三角地区被庞大的经济浪潮席卷,无暇顾及大米等农产品品牌发展。时隔二十年,广东省于今年5月份盛大发起“广东省十大名牌系列农产品评选推介活动”,此举旨在重振广东省农业产品的品牌价值和整体素质,推助“广东粮”重返历史舞台。
近日,记者跟随广东省十大名牌农产品推介活动报道组深入广东省各地市,走访了多家大型粮食生产企业,令记者体会颇深的是,广东省粮食生产、加工行业正暗香涌动,各地粮企,如诸侯争霸,势均力敌,各有千秋,谁是这其中的领头羊俨然不太重要,在保证外来大米的安全加工之外,广东粮企齐头并进保护广东本土米业成为其中可窥之处。
广东粮企在发挥各自优势的同时,如何携手为全国人口第一大省广东省乃至港澳地区把好粮食安全的大门,即已决定了“广东粮”是否能够重返历史舞台。
近期,本刊连载的“广东省十大名牌农产品评选活动系列报道”曾报道了广东省产粮大市云浮市罗定地区以产稻多、产好稻为广东人提供放心大米,本期记者带您继续走进广东粮食另一主产区――以江门、惠州等地为主的珠三角洲片区。
最本土――台山“珍香”米
如果你说泰国香米最好吃,怕是因为没有吃过台山米,台山米被阅米无数的岭南人视为最具饭香味的大米。台山米,顾名思义产自广东省江门市台山地区,该地自古盛产丝苗米。台山是广东省知名的侨乡,远在异乡的侨胞们,只要能吃上一口台山大米,便可慰藉思乡之情,因此台山米不仅在广东省内受欢迎,早已跟随华侨的脚步香飘海外。在业内,由于台山米成熟早,品质好,成为各类配方米中要想提高大米品质首选的优质配方米。
台山水稻年播种面积达108万多亩,种植优质丝苗米面积达99.8%,年产量达40万吨,成为广东省优质粮生产大市和“全国粮食生产先进县”,由于台山地区产出丝苗米品质优良,2013年被中国粮食行业协会认定为“中国优质丝苗米之乡”。素有“广东第一田”之称的都斛就坐落在境内,万亩水稻种植区不但是台山市粮食主产区,还成为当地一道亮丽的风景。
台山地区之所以能产出优质大米,是由于台山地处珠江三角洲西部,气候温润,土壤肥沃,据广东省地质调查院对珠三角富硒土壤的调查报告显示,台山拥有富硒优质土壤量据广东省首位,此外台山市拥有大小水库等679宗,大部分农田采用水库水灌溉,水质优良。好田好水自然产好米。
台山优质丝苗米素有“米中碧玉”之称,而以台山原产优质丝苗米为原料的“珍香”牌丝苗米则是其中的典范。该品牌大米,米粒细长、晶莹透亮、无心白腹白、饭味清香、软而不粘、冷而不硬,特别有米香味。“珍香”米出自台山市粮食购销总公司,是广东省内少有的国有独资粮食购销企业。该公司自2003年以来,就以“订单农业”为纽带,每年与近2000户农民订单种植2万多亩优质稻米。从源头上确保了品牌大米农药残留绝不超出国家标准,以点带面地保证了台山大米的优良品质。
台山米之所以有名,还由于台山大米是业内公认的纯本地米,如“珍香”牌丝苗米一直以100%的台山原产优质丝苗稻为原料,最大程度地保留了台山大米的本土味道。
“做粮食就是做良心”,台山市粮食购销总公司一位负责人向记者表示。该公司一年拿去检测的大米样品多达291种,到目前为止,未出现一次检测不合格的情况。安全可靠,独具本土特色的台山米;是最能代表广东本土大米的名牌大米之一。
最科学――惠州海纳农业
台山米是最岭南米味的大米代表,而来自惠州市的海纳农业有限公司(以下简称“海纳农业”),则是最会利用科学技术生产优质大米的企业。在农业面源污染日益严重的今天,如何在不用农药化肥的前提下也能长出好庄稼,是划分农业企业是否科学现代的一道分水岭。
中国人有句俗语叫做:一物降一物。“海纳农业”就采用“以虫治虫”的方法来变害虫为益虫为稻田保驾护航。记者在“海纳农业”的天敌昆虫与资源昆虫繁殖中心看到,技术人员拿出一块巴掌大小的纸片,上面密密麻麻的“小黑点”是约5万只微小赤眼蜂,未来这些蜂卡将被分放在稻田间,待虫卵羽化成赤眼蜂后,数万只赤眼蜂如同一个庞大的杀虫部队,捕杀水稻的天敌――水稻螟。
以上是“海纳农业”与中山大学、广东昆虫研究所共同组建的天敌工厂,为病虫害的绿色防控提供保障,除了在稻田释放赤眼蜂防治害虫之外,还采用诱虫灯、性诱剂诱虫,达到“以虫治虫”的目的。据了解,“海纳农业”每年为该公司科研团队投入的科研经费不低于500万元。对科技的高投入,有效保障了该公司发展绿色农业的可持续之路。
“海纳农业”不仅在防虫方面积极投入农业科学技术,在生产大米方面也颇费心思,想借农业高科技手段最大程度挖掘出大米的营养价值。
“海纳农业”董事长兼总经理钟振芳向记者表示,现在的小孩总是喜欢喝碳酸饮料等亚健康饮料,对此,公司科研团队通过三年的研究,研发出一款适合青少年儿童饮用的有机食品“芽米加”糙米奶饮料。据介绍,该饮料采用萌芽糙米,既新鲜去壳的有机稻谷为原料,在一定条件下培养所得到的由幼芽和带糠粉层的胚乳组成的高营养米制品。该饮料富含氨基丁酸,营养价值极高。
“一般80斤稻谷可以加工成40斤大米,真正有营养的部分被浪费了。而利用糙米加工成‘芽米加’饮料,80斤稻谷起码可以转化利用65斤,大大提高了大米的有效利用率。”以米为生,爱米如命的钟振芳娓娓讲述“海纳农业”如何最大程度挖掘大米的价值。
正是由于长期以来对农业科技的重视,“海纳农业”成为广东省最大的优质米生产企业之一。该公司现有水稻种植总面积15万亩,其中公司自有生产基地3.3万亩(其中3万亩通过有机认证),订单合作基地11.7万亩,共24个生产基地。公司年产10万吨大米,其中有机大米占3成,占广东高端米市场的三分之一。
记者采访中了解到,该公司有机米的售价在12.8元/斤左右,明确标有富硒成分的功能大米售价也不过30多元/斤。有机米和富硒功能米的价格均低于市场平均水平。钟振芳告诉记者,有机米的成本决定了其价格比普通大米的价格要高出3倍左右,市面上一些有机大米的价格高出普通大米若干倍,难免有炒作的嫌疑。注重科技应用的“海纳农业”,更以诚信为本。记者获悉,今年下半年,该公司将推出“一分良田”定制活动,公司将认购的田块象征性的划分为以一分地为单位的小块,客户认购后开通手机实时监控服务,水稻生产全程可监控,以此拉近消费者对大米生产企业的信心。
“海纳模式”正以一种全新的定制模式,服务珠三角地区的市民群众。一路采访,“海纳农业”对科技的高度应用,给人留下与众不同的印象。
最有机――珠海“乡意浓”
近几年,全国各地有机大豆、有机大米等有机食品如雨后春笋般冒出。对经济发展嗅觉灵敏的广东人,对农业发展的脉搏同样掌握在先。消费者听说有机大米只是在近几年,而广东地区种植、生产有机稻米的企业早在10年前就已在布局天下。前面提到的“海纳农业”于2000年开始研究有机大米种植技术,与其并驾齐驱的另一有机大米生产企业――广东乡意浓农业科技有限公司成立于1988年,于2002年开始专门生产种植有机大米,是广东省内最早种植有机稻米的企业之一。目前,该公司有机大米种植基地分布在东北、江西、广东清远等5大种植基地,年产量达3000多吨,总种植面积超过2万亩。
该公司一位负责人坦言,有机稻米种植并不容易,其对土壤、水源和空气都要较高的要求。首先,种植过程中添加的有机肥料是专门从具有有机认证的有机肥料公司采购的,绝非普通意义上未经加工的农家肥;其次,生产过程中不使用农药、化肥,以及转基因技术;再次,大米加工过程中,绝不添加任何添加剂;仓储过程绝不使用杀虫剂和传统熏蒸杀虫法,只能用低温恒温控制。确保每一粒大米都是稻谷原粮加工而成的。
珠三角地区经济发展快,土地资源紧缺,不少粮企采取走出去的办法,走出省外,走出国门,去种植更多的优质稻米。“乡意浓”品牌大米,集周边省份最佳的土地资源,大规模种植有机大米,也成为广东优质米生产企业的一种发展模式。
最阳光――惠东“沿海”米
俗语道:靠山吃山,靠海吃海。广东珠三角沿海地区有一种本地人十分喜爱的大米――沿海米,准确来讲,就是沿海地区产出的象牙米。
内陆地区稻谷很容易受到寒露风的侵袭,影响开花率。而惠东沿海一带由于海风会反推寒露风,保护了沿海稻谷不受寒露风侵袭,花开饱满,结出果实粒大圆润,比一般大米更具米香味。
其中惠州市好收成农贸有限公司的万其牌沿海米被评为广东省名牌产品,该大米生产加工企业堪称是惠州人自家的谷仓基地。该公司与科研院所长期合作,建立4000亩水稻试验示范基地,带动50个村的3600户沿海农户种植优质水稻新品种,覆盖惠州地区及汕头沿海地区面积达13万多亩。公司134公顷生产基地获得无公害产地认证。
采访中,记者一行来到该公司位于惠东县稔山镇的水稻种植基地,依山傍海的稔平半岛素有“南方乌克兰”之称,水土十分肥美。只是近海强烈的太阳光照射令人睁不开眼。只见碧绿成片的稻田里,有几只白鹭正在觅食,引自水库的灌溉水渠蜿蜒曲折,稻田风光宜人。这里属于南亚热带季风气候,年平均气温达22摄氏度,年日照时间长达2400小时,为水稻光合作用提供非常有利的生长条件;当地平均降雨量达2200毫米,雨水丰裕;稻谷生长期长达150天,再经过测土配方施肥,土壤涵养好,孕育出的大米颗粒饱满,十分具有米香味。
纳米技术的优缺点篇3
纳米材料与器件近年来发展迅速。一方面,材料性能日益多功能化,集成力、电、磁、热、光等多场复合效应;另一方面,材料的微观结构也变得复杂而富有层次,对其宏观性能产生深刻影响。例如,在热电材料中,界面、缺陷和量子局域效应被广泛用于提升热电优值;在钙钛矿太阳能电池中,极性电畴壁被认为给电子和空穴提供分离的高速输运通道;而在高密度磁阻存储器件中,纳米结构对磁电耦合和输运至关重要。从诸多热点领域所选取的这三个典型实例表明,发展多场复合效应的新型功能材料与器件是当今纳米科技的重要趋势,而显著的尺寸、界面和量子效应也给材料与器件的宏观性能带来深刻影响,需要在纳米尺度综合调控和定量测量。
当前,对材料微观结构的表征和宏观性能的测量已较为成熟:在显微结构上,能在原子尺度精确确定材料物相和成分;在宏观性能上,表征电、光、磁、力、热响应及其耦合也加深了人们对多场物性的理解。这些成熟的单项技术表明,在单分子及纳米层面调控并测量材料电、光、磁、力、热及其耦合响应时机已经到来,也是推动先进功能材料与器件发展的大势所趋。然而由于表征技术的限制,人们对纳米尺度多场物性的关注还不多,相关调控和测量仍处于襁褓之中。
为揭示光电、热电、磁电材料和器件的微观结构、局域响应和宏观性能的关联,分析铁电极化对光电转换的调控,界面和缺陷对热电输运的影响以及微纳结构和磁电耦合的相互作用,中国科学院深圳先进技术研究院牵头,联合华南师范大学、清华大学以及南京大学,共同承担了国家重点研发计划“纳米科技”重点专项-纳米尺度多场物性与输运性质测量及调控。该项目旨在发展基于多功能扫描探针的纳米测量与调控技术,在纳米尺度综合定量测量调控材料电学、光学、磁学、力学和热学多场物理及输运性质,为研究先进功能材料与器件中的关键科学问题提供强有力工具。
项目的主要研究内容分为以下四个方面:(1)发展纳米尺度多场激励调控与测量技术:通过微纳加工研发制备多功能扫描探针,结合原子力显微镜环境下宏观复合加载系统,以及宏观微观协同的跨尺度测试分析和模拟,实现纳米尺度多场物理及输运性质的综合测量与调控,为深入研究光电转换、热电输运、以及磁电耦合性能提供强有力的工具和方法。(2)研究极化调控光电转换:制备一系列材料与器件,在单分子层面,运用扫描探针定量测量极性分子在多场激励下的光电子激发、复合及输运,揭示电极化调控有机无机钙钛矿光电转换及光控开关的微观机理和失效过程,阐明微纳结构、极性和缺陷对新型太阳能电池性能的影响和调控,进而提出光电器件设计调控新方法。(3)研究纳米尺度热电输运:在微纳尺度,运用扫描探针定量测量热电材料在跨尺度多场载荷下的局域响应,揭示界面、缺陷和复合结构对热电输运的影响及其失效过程,探索磁场光场对自旋塞贝克效应的调制以及声子、光子和载流子的相互作用,阐明微纳结构和缺陷对高性能热电材料输运性质的影响,进而提出热电材料设计调控新方法。(4)多场调控磁电器件:针对磁、电、光、热、力对多铁性磁电序参量的调控及电输运的影响,运用扫描探针定量测量磁电介质在跨尺度复合载荷下的局域响应,研究单分子磁体各向异性和弛豫,揭示磁电有序及演化与微观结构的关联,特别是受缺陷的影响及其失效机理,进而提出磁电材料设计调控新方法。
项目预期将开发基于多功能扫描探针的纳米测量与调控技术,实现在纳米尺度综合调控、定量测量材料多场物理及输运性质,并以此解决先进功能材料与器件的一系列关键科学问题,进而形成一系列原创、具有自主知识产权的新思想(如宏观微观协同调控测试)、新技术(如多功能扫描探针激励和多场原子力显微样品加载)、新方法(如跨尺度实验测试、数据采集、和计算模拟)和新发现(如光电、热电、磁电多场物性和耦合新机制),推动纳米技术、高速低能耗信息处理与存储、微电子器件、高效清洁能源、以及精密仪器等产业和领域的发展。
纳米技术的优缺点篇4
文章编号:1003-1383(2013)01-0106-04中图分类号:R319文献标识码:A
纳米(符号为nm)是一种度量单位。1nm=1/100万mm。“纳米材料”的概念是20世纪80年代初形成的,指的是物质的颗粒尺寸小于100nm的具有小尺寸效应的零维、一维、二维、三维材料的总称。目前在口腔医学临床上使用的材料相当广泛,运用于口腔的纳米材料称之为口腔纳米材料,对口腔临床修复治疗起到了非常重要的作用。随着纳米材料和纳米技术的兴起,新型的纳米材料开始在口腔医学领域[1]应用,对现有口腔材料的改性和创新具有重要意义。纳米材料具有以下主要特点:纳米粒子大小在1~100nm;有大量的自由表面或界面;纳米单元之间存在着相互作用,作用或强或弱。因为具有以上特性,纳米材料具有包括表面或界面效应、小尺寸效应、量子尺寸、宏观量子隧道效应[2]。纳米材料与组成相同的微米晶体材料比较具有其许多优异的性能[3],主要表现在催化、磁性、光学、力学等许多方面。纳米高分子材料的应用涉及多方面,主要为介入性诊疗、免疫分析、药物控制释放载体等[4]。纳米技术涉及许多领域,包括纳米合成技术、纳米装置技术、微加工技术等,在口腔医学方面采用的纳米技术称之为口腔纳米技术[5]。现就纳米材料与纳米技术在口腔内外科学中的应用进行如下概括综述。
纳米技术与纳米材料在口腔内科学中的应用1.纳米复合树脂从以化学方式固化的复合树脂到光固化灯照射固化的复合树脂及双固化型复合树脂。用复合树脂修复牙体缺损已有40多年历史。复合树脂的基本组成部分是无机填料,根据无机填料的粒径大小分为大颗粒型、超微颗粒型和混合填料型。混合填料型树脂填料粒径近几年不断向纳米级发展。如今推出的适用于所有充填通用型纳米复合树脂,将是最有希望的新型复合树脂。为改善牙科树脂的性能,目前多采用许多增加强度和增加韧性的方法。在树脂中加入种类、数量、大小不相同的无机填料,虽然使复合树脂的强度得到提高,但同时又使树脂的韧性降低。而在树脂中运用纳米粒子来填充,可使复合树脂强度与韧性增加。使复合树脂的强度增强的纳米粒子包括纳米二氧化硅[6]、纳米氧化锆[7]、纳米羟基磷灰石[8]、纳米氧化钛[9]等。由于纳米粒子具有以下独特的性能,如非配对原子多,表面缺陷少,比表面积大,能与聚合物发生较强物理结合或化学结合,使粒子与基体间界面粘结时,对更大的载荷都能承受,从而使纳米复合树脂具有更高的强度和韧性。为使材料发生聚合时不收缩或收缩减小,在光化聚合丙烯酸脂或异丁烯酸脂基的向列液晶单体中,加入二氧化硅纳米微粒和较高含量的金属氧化物,使形成高分子量的聚合物粘结性增强,
体积收缩减小。二氧化锆用于口腔科具有X射线阻射性高、强度高和硬度高等优点,纳米氧化锆复合树脂光学透明性极高,是理想的口腔科复合树脂增强材料。口腔临床使用的树脂充填材料,放射阻射性弱,如发生继发龋坏时,X线片上很难将充填材料与继发龋进行鉴别,若将氧化钽纳米粒子通过运用纳米技术填充入树脂材料中,形成具有放射阻射性的新型纳米复合树脂材料,材料的物理强度会得到增强。而将氧化钽纳米粒子加入玻璃离子材料中,能使材料克服容易溶解的不足,同时强度增强,与一般的复合树脂相比,具有更好的耐磨性。该材料主要是依靠纳米机械结合,来提高其耐磨性。如果把纳米多孔二氧化硅凝胶加入树脂材料中,使新形成的材料具有不相同的结构,耐磨性能得到提高。有学者将纳米材料加入复合树脂中,发现能使其具有抗菌性能。Xu等在口腔科复合树脂中加入熔附了纳米硅颗粒的晶须和纳米二钙或四钙磷酸盐,可达到自修复的目的[10,11]。宋欣等人在复合树脂中加四针状氧化锌,发现该材料不仅能提高树脂的机械性能,还使树脂具有抗菌作用[12]。Niu等也在复合树脂中加入四针状氧化锌,使复合树脂具有抗菌性能的同时机械性能也增强[13]。由有机高分子材料和各种纳米单元通过多种方式复合成型的新型复合材料就是纳米填料复合树脂,是一种含有纳米单元相的纳米复合材料。纳米复合树脂与过去的复合树脂相比较性能上有更大提高,其优势就是色泽更逼真,抛光性与持久性更佳,超强强度更耐磨,可以广泛用于前牙或后牙。
2.纳米粘结材料从BisGMA粘结剂和酸蚀技术用于口腔临床以来,在口腔临床粘结治疗方面获得很大进步。口腔内环境有其独特性,使许多粘接材料和粘接技术没有达到理想要求。随着纳米技术的广泛运用,纳米材料的日益发展,将纳米粒子加入现有的口腔粘结材料中进行改性外,还把纳米杂化树脂(poss)作为基质,用它与硅基纳米材料发生共聚,从而得到高强度、热稳定、耐久性的高粘结性材料。这种材料不仅能很好地克服酸蚀过程中造成的牙本质小管闭合问题,而且能在牙体和材料之间发挥较高的粘结性,使粘接技术和粘接材料达到一个更高更新的水平。牙本质过敏是口腔内科临床上常见病多发病,是牙齿上暴露的牙本质在受到外界刺激,如温度、化学性、机械性刺激后,引起牙齿的酸、软、疼痛症状,这主要是牙本质暴露后,牙本质小管内的液体,即牙本质液对外界刺激产生机械性反应所引起。临床主要是通过在暴露的牙本质表面涂布粘结剂来缓解敏感症状。在临床口腔常用的光固化粘结剂中加入一些纳米材料,不仅能提高其粘结力,还可作为牙本质过敏治疗的封闭材料。主要是利用纳米粘结材料来封堵牙本质小管,可以使牙本质过敏得到迅速和永久的治愈。
3.纳米根管充填材料临床上用于做根管治疗的根充材料要求有以下特点:其一,能把炎症始发地彻底清除,能使根管封闭、死腔消灭,从而防止微生物进入根管内,阻止根管再次受到感染;其二,材料自身有恢复组织病变的能力,对根尖孔的钙化闭合有促进作用。因羟基磷灰石颗粒的尺寸较大,如单纯使用羟基磷灰石作为根管充填材料,在根管充填后形成的整体脆性较大,弹性模量与牙根牙本质不匹配,从而出现明显的微渗漏。随着纳米羟基磷灰石生物材料的出现,能很好解决根充材料存在的关于生物相容性的难题。经过大量基础和临床研究,发现纳米羟基磷灰石的结构与天然骨的无机成分很相似,均有良好的生物相容性,两者可以紧密结合,结合后周围组织未见有炎症和细胞毒性的发生,其对骨组织还有良好的诱导性。材料的组成和构造与脊柱动物硬组织相似,生物相容性良好[14~16]。将纳米羟基磷灰石制成糊剂用于充填根管,大多数病例根尖透影区变小或消失,临床症状消失,成功率达93.2%。根尖周围组织有病变的牙齿,成功率达93.8%。王艳玲[17]研究指出,用纳米羟基磷灰石根充与传统氧化锌丁香油糊剂根充两者相比较,在根管壁密合度方面,前者明显优于后者。纳米羟基磷灰石具有良好的根尖封闭特性,用其作根管封闭剂可减少微渗漏的出现。不少学者把具有良好的生物相容性,可使病变组织愈合加快,根充不会被组织吸收的纳米羟基磷灰石作为根管充填材料和根尖屏障材料,对其可行性进行了大量的临床研究[18~22],取得良好的疗效。纳米羟基磷灰石材料本身无杀菌作用,将碘或其他抗生素加入其中可以使该材料的抑菌和抗菌效果提高[23]。张海燕等[24]对难治性根尖周炎应用无机抗菌剂作为根管充填剂进行根管治疗,取得很好临床疗效。本身没有成骨性的纳米羟基磷灰石,可为新生骨的沉积提供合适的生理基质,引导牙骨质不断沉积来封闭根尖处的根尖孔。有临床报道将其用于年轻恒牙的根管充填特别合适。
纳米技术与纳米材料在口腔外科学中的应用1.纳米技术在拔牙麻醉上的应用拔牙麻醉时的注射操作和疼痛往往让患者感到害怕和恐惧。临床上可使用丁卡因进行组织的表面麻醉或局部注射碧兰麻来减轻患者的疼痛,但有时仍会出现诸多问题如麻醉镇痛不全、血肿、面神经暂时性麻痹等。随着纳米技术的发展,口外医生可将纳米粒子活性麻醉剂悬液直接涂布在牙龈和牙龈沟内,在声学信号(如超声波)或程序化的化学反应链(电化学机制)的指引下,经牙齿的薄弱区牙颈部,药物通过牙本质小管到达牙髓腔,达到麻醉效果。比牙本质小管管径(1~4μm)小数百倍甚至数千倍的纳米粒子,可由信号引导,从牙本质小管灌流到牙髓腔内,起到麻醉效果,实现牙科无痛麻醉,给患者减少疼痛和恐惧感。
2.纳米复合体材料修复骨缺损随着口腔材料学不断发展,羟基磷灰石作为新兴的材料,可大量用于口腔骨组织缺损的修复,如牙槽骨再造、牙周骨组织缺损、颌骨囊肿等。研究表明:羟基磷灰石所具有的许多特征与多种因素有关,尤其与它的颗粒直径大小有密切关系。如果颗粒直径大小在1~100nm,羟基磷灰石则会具有特有的生物学特点。纳米羟基磷灰石的晶体构造与自然骨中的无机成分相比较,两者极为相似,都可以通过氢键方式与蛋白质及多糖结合在一起。无细胞毒性,生物相容性好,故认为其是多种口腔疾患造成天然骨质缺陷最好的替代物[25~29]。纳米羟基磷灰石材料既可作为骨形成的支架,而且还对骨细胞有引导的作用。有学者用纳米羟基磷灰石复合胶原植入术,对牙周病造成骨组织缺损的患者进行临床治疗及疗效观察,取得令人满意的临床效果[30,31]。羟基磷灰石复合胶原与周围组织相容性好,其组成和构造跟天然骨相似,本身无细胞毒性,对牙周膜细胞的生长和新生骨的形成有促进作用,故认为它是一种良好的组织工程支架材料。清华大学材料科学与工程系研制的纳米羟晶/胶原仿生骨,用来修复家兔颅颌骨实验性穿通性骨缺损,因仿生骨有良好的生物相容性,对骨组织的再生、修复起到促进作用,从而取得良好的骨创愈合效果,达到骨创的关闭和骨性桥接。有学者用纳米羟基磷灰石人工骨充填慢性根尖周炎及根尖囊肿手术后的骨缺陷区内以及下颌智齿拔除后的牙槽窝内,均取得令人满意的疗效。颌骨囊肿是口腔科的一种常见疾病,为减少术后出现感染概率,缩短术后修复时间,防止患者面部出现畸形,可加入纳米羟基磷灰石人工骨,纳米羟基磷灰石人工骨在充填骨缺损的同时,使感染问题得以解决,而且对骨诱导作用明显,手术操作简便易行,应在口腔外科临床工作中广泛推广。
3.纳米控释系统在肿瘤治疗中的应用纳米控释系统包括纳米粒子和纳米胶囊,它们直径在10~500nm之间。药物可以通过吸附作用、附着作用位于粒子表面或者通过溶解、包裹作用位于粒子内部。在外磁场的引导下,将磁性纳米颗粒作为药剂载体引导到肿瘤患者的患病部位,对病变部位进行定位治疗,这样可以减少治癌药的毒副作用,提高药物疗效。恶性肿瘤血管组织的通透性较大,细胞的吞噬能力较强,用静脉给药方式把纳米粒子运送到肿瘤组织,可使药物疗效得到提高,降低毒副作用和减少给药量。LeboldT等[32]把针孔结构的纳米硅石当作载体,结合多柔比星,将两者制成薄膜,与其他给药方式比较其释药时间显著延长。作为抗恶性肿瘤药物的输送系统,纳米控释系统被认为是最有发展的应用之一。纳米颗粒乳剂载体与分散于人体内的癌细胞容易融合,临床上可利用它将抗癌药物包裹。有人用聚乙烯吡咯烷酮纳米粒子将抗癌药物紫杉醇包裹用于肿瘤治疗,结果表明,含紫杉醇的纳米粒子与同浓度游离的紫杉醇在治疗肿瘤疗效方面,前者疗效明显增加。大量研究显示,具有纳米级的一些抗肿瘤药物,延长在肿瘤内停留时间,肿瘤生长缓慢,同时减少对组织器官的毒性和副作用,减少药物剂量。纳米脂质载体在肿瘤造影和成像等方面具有较好的优势[33],因为其对药物、基因、成影剂有较好的包封率。
综上所述,随着纳米材料与纳米技术的兴起和快速发展,为口腔材料学的研究提供了一种全新的方法和手段。使我们能以全新的思维模式从纳米水平来重新探索和研究材料的成份与结构,从而为口腔医学领域研制出更好更理想的口腔材料。
参考文献[1]王程越,李曦光.纳米技术与口腔医学[J].辽宁医学院学报,2004,25(4):6870.
[2]梁立红.纳米材料特点及研究动态[J].吉林工学院学报,2000,21(3):3033.
[3]胡文祥.分子纳米技术在生物医药学领域的应用[J].化学通报,1998(5):3238.
[4]SongCX,LabhasetwarV,MurphyH,etal.Formulationandcharacterizationofbiodegradablenanoparticlesforintravascularlocaldrugdelivery[J].JControlledRelease,1997,43:197212.
[5]陈治清.口腔生物材料学[M].北京:化学工业出版社,2004:116166.
[6]支敏,李长福,韦界飞,等.纳米SiO2在PMMA口腔义齿修复材料中的应用基础研究[J].天津医科大学学报,2007,13(4):493496.
[7]吴伟力,张修银,朱邦尚,等.氧化锆的用量对纳米氧化锆/PMMA复合材料挠曲性能的影响[J].口腔颌面修复学杂志,2008,9(1):4347.
[8]王云,王青山.牙体修复性纳米羟基磷灰石复合材料的机械性能研究[J].现代口腔医学杂志,2011,25(2):115117.
[9]XiaY,ZhangF,XieH,etal.Nanoparticlereinforcedresinbaseddentalcomposites[J].JDent,2008,36(6):450455.
[10]XuHH,SunL,WeirMD,etal.NanoDCPAwhiskercompositeswithhighstrengthandCaandPO4release[J].JDentRes,2006,85(8):722727.
[11]XuHH,WeirMD,SunL,etal.StrongnanocompositeswithCa,PO4,andFreleaseforcariesinhibition[J].JDentRes,2010,89(1):1928.
[12]宋欣,杜滢,肖月,等.添加四针状氧化锌晶须抗菌剂对义齿软衬材料机械性能的影响[J].黑龙江医药科学,2011,34(1):3940.
[13]NiuLN,FangM,JiaoK,etal.Tetrapodlikezincoxidewhiskerenhancementofresincomposite[J].JDentRes,2010,89(7):746750.
[14]李平.新型纳米羟基磷灰石根充糊剂(nHA)的应用基础研究[D].四川大学华西口腔医学院硕士学位论文,2005.
[15]苏勤,叶玲,周学东.纳米羟磷灰石/聚酰胺66对牙髓细胞生物学作用的实验研究[J].华西口腔医学杂志,2005,23(1):7981.
[16]方厂云,曹莹,夏宇,等.大鼠牙细胞与纳米羟基磷灰石的体外复合培养[J].中南大学学报:医学版,2007,32(1):114118.
[17]王艳玲.纳米级HA根充糊剂根管密合度及抑菌性的实验研究[D].佳木斯大学口腔医学院硕士学位论文,2006.
[18]董波,刘陆滨,刘玉杰.纳米羟基磷灰石修复慢性根尖周炎骨缺损的研究[J].黑龙江医药科学,2006,29(4):103.
[19]杨青岭,李文婷,王健平,等.壳聚糖/纳米羟基磷灰石治疗髓室底穿的实验研究[J].黑龙江医药科学,2007,30(2):37.
[20]程玉华,陈东,赵广军,等.骨形成蛋白复合羟基磷灰石用于盖髓根管充填的临床观察[J].医药,1998,10(2):9394.
[21]刘秀丽,刘曦.复方羟基磷灰石充填根管临床疗效观察[J].西安医科大学学报,2000,21(3):257258,295.
[22]JallotE,NedelecJM,GrimaultAS,etal.STEMandEDXScharacterisationofphysicochemicalreactionsattheperipheryofsolgelderivedZnsubstitutedhydroxyapatitesduringinteractionswithbiologicalfluids[J].ColloidsSurfBBiointerfaces,2005,42(34):205210.
[23]KrisanapiboonA,BuranapanitkitB,OungbhoK.Biocompatabilityofhydroxyapatitecompositeasalocaldrugdeliverysystem[J].JOrthopSurg(HongKong),2006,14(3):315318.
[24]孙海燕,裴玉岩,梁楠.羟基磷灰石根管充填诱导根尖形成的临床研究[J].黑龙江医药科学,2003,26(1):21.
[25]温波,陈治清,蒋引珊,等.纳米羟基磷灰石骨细胞相容性的研究[J].华西口腔医学杂志,2004,22(6):456459.
[26]崔阳,刘一,陈学思,等.改性羟基磷灰石骨修复纳米复合材料的制备及生物学评价[J].中国组织工程研究与临床康复,2007,11(26):50745077.
[27]汤京龙,奚廷斐.纳米羟基磷灰石生物安全性的研究现状[J].中国组织工程研究与临床康复,2007,11(5):936939,943.
[28]HuberFX,BelyaevO,HillmeierJ,etal.FirsthistologicalobservationsontheincorporationofanovelnanocrystallinehydroxyapatitepasteOSTIMinhumancancellousbone[J].BMCMusculoskeletDisord,2006,7:50.
[29]KalitaSJ,BhardwajA,BhattHA.Nanocrystallinecalciumphosphateceramicsinbiomedicalengineering[J].MaterialsSciEngC,2007,27:441449.
[30]张莉,马宁,车彦海,等.纳米羟磷灰石和胶原复合膜修复下颌骨缺损[J].国际口腔医学杂志,2009,36(6):647649,654.
[31]孙波,李月玲,杨德龙.纳米羟基磷灰石胶原骨植入治疗根分叉病变的临床研究[J].口腔医学,2010,30(6):358359,366.
[32]LeboldT,JungC,MichaelisJ,etal.NanostructuredsilicamaterialsasdrugdeliverysystemsforDoxorubicin:singlemoleculeandcellularstudies[J].NanoLett,2009,9(8):28772883.
纳米技术的优缺点篇5
关键词:纳米科学纳米技术纳米管纳米线纳米团簇半导体
NanoscienceandNanotechnology–theSecondRevolution
Abstract:Thefirstrevolutionofnanosciencetookplaceinthepast10years.Inthisperiod,researchersinChina,HongKongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.Theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.Structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.Theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.Thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.Inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.Therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.Weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.Anumberofalternativeapproacheswillbediscussed.Weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.
Keywords:Nanoscience,Nanotechnology,Nanotubes,Nanowires,Nanoclusters,“build-up”,“build-down”,Semiconductor
I.引言
纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。例如,美国政府2001财政年度在纳米尺度科学上的投入要比2000财政年增长83%,达到5亿美金。有两个主要的理由导致人们对纳米尺度结构和器件的兴趣的增加。第一个理由是,纳米结构(尺度小于20纳米)足够小以至于量子力学效应占主导地位,这导致非经典的行为,譬如,量子限制效应和分立化的能态、库仑阻塞以及单电子邃穿等。这些现象除引起人们对基础物理的兴趣外,亦给我们带来全新的器件制备和功能实现的想法和观念,例如,单电子输运器件和量子点激光器等。第二个理由是,在半导体工业有器件持续微型化的趋势。根据“国际半导体技术路向(2001)“杂志,2005年前动态随机存取存储器(DRAM)和微处理器(MPU)的特征尺寸预期降到80纳米,而MPU中器件的栅长更是预期降到45纳米。然而,到2003年在MPU制造中一些不知其解的问题预期就会出现。到2005年类似的问题将预期出现在DRAM的制造过程中。半导体器件特征尺寸的深度缩小不仅要求新型光刻技术保证能使尺度刻的更小,而且要求全新的器件设计和制造方案,因为当MOS器件的尺寸缩小到一定程度时基础物理极限就会达到。随着传统器件尺寸的进一步缩小,量子效应比如载流子邃穿会造成器件漏电流的增加,这是我们不想要的但却是不可避免的。因此,解决方案将会是制造基于量子效应操作机制的新型器件,以便小物理尺寸对器件功能是有益且必要的而不是有害的。如果我们能够制造纳米尺度的器件,我们肯定会获益良多。譬如,在电子学上,单电子输运器件如单电子晶体管、旋转栅门管以及电子泵给我们带来诸多的微尺度好处,他们仅仅通过数个而非以往的成千上万的电子来运作,这导致超低的能量消耗,在功率耗散上也显著减弱,以及带来快得多的开关速度。在光电子学上,量子点激光器展现出低阈值电流密度、弱阈值电流温度依赖以及大的微分增益等优点,其中大微分增益可以产生大的调制带宽。在传感器件应用上,纳米传感器和纳米探测器能够测量极其微量的化学和生物分子,而且开启了细胞内探测的可能性,这将导致生物医学上迷你型的侵入诊断技术出现。纳米尺度量子点的其他器件应用,比如,铁磁量子点磁记忆器件、量子点自旋过滤器及自旋记忆器等,也已经被提出,可以肯定这些应用会给我们带来许多潜在的好处。总而言之,无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。
II.纳米结构的制备———首次浪潮
有两种制备纳米结构的基本方法:build-up和build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等)。“build-up“的优点是个体纳米部件的制备成本低以及工艺简单快捷。有多种方法如气相合成以及胶体化学合成可以用来制备纳米元件。目前,在国内、在香港以及在世界上许多的实验室里这些方法正在被用来合成不同材料的纳米线、纳米管以及纳米团簇。这些努力已经证明了这些方法的有效性。这些合成方法的主要缺点是材料纯洁度较差、材料成份难以控制以及相当大的尺寸和形状的分布。此外,这些纳米结构的合成后工艺再加工相当困难。特别是,如何整理和筛选有着窄尺寸分布的纳米元件是一个至关重要的问题,这一问题迄今仍未有解决。尽管存在如上的困难和问题,“build-up“依然是一种能合成大量纳米团簇以及纳米线、纳米管的有效且简单的方法。可是这些合成的纳米结构直到目前为止仍然难以有什么实际应用,这是因为它们缺乏实用所苛求的尺寸、组份以及材料纯度方面的要求。而且,因为同样的原因用这种方法合成的纳米结构的功能性质相当差。不过上述方法似乎适宜用来制造传感器件以及生物和化学探测器,原因是垂直于衬底生长的纳米结构适合此类的应用要求。
“Build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(MBE)、化学气相淀积(MOVCD)等来进行器件制造的传统方法。“Build-down”方法的缺点是较高的成本。在“build-down”方法中有几条不同的技术路径来制造纳米结构。最简单的一种,也是最早使用的一种是直接在衬底上刻蚀结构来得到量子点或者量子线。另外一种是包括用离子注入来形成纳米结构。这两种技术都要求使用开有小尺寸窗口的光刻版。第三种技术是通过自组装机制来制造量子点结构。自组装方法是在晶格失配的材料中自然生长纳米尺度的岛。在Stranski-Krastanov生长模式中,当材料生长到一定厚度后,二维的逐层生长将转换成三维的岛状生长,这时量子点就会生成。业已证明基于自组装量子点的激光器件具有比量子阱激光器更好的性能。量子点器件的饱和材料增益要比相应的量子阱器件大50倍,微分增益也要高3个量级。阈值电流密度低于100A/cm2、室温输出功率在瓦特量级(典型的量子阱基激光器的输出功率是5-50mW)的连续波量子点激光器也已经报道。无论是何种材料系统,量子点激光器件都预期具有低阈值电流密度,这预示目前还要求在大阈值电流条件下才能激射的宽带系材料如III组氮化物基激光器还有很大的显著改善其性能的空间。目前这类器件的性能已经接近或达到商业化器件所要求的指标,预期量子点基的此类材料激光器将很快在市场上出现。量子点基光电子器件的进一步改善主要取决于量子点几何结构的优化。虽然在生长条件上如衬底温度、生长元素的分气压等的变化能够在一定程度上控制点的尺寸和密度,自组装量子点还是典型底表现出在大小、密度及位置上的随机变化,其中仅仅是密度可以粗糙地控制。自组装量子点在尺寸上的涨落导致它们的光发射的非均匀展宽,因此减弱了使用零维体系制作器件所期望的优点。由于量子点尺寸的统计涨落和位置的随机变化,一层含有自组装量子点材料的光致发光谱典型地很宽。在竖直叠立的多层量子点结构中这种谱展宽效应可以被减弱。如果隔离层足够薄,竖直叠立的多层量子点可典型地展现出竖直对准排列,这可以有效地改善量子点的均匀性。然而,当隔离层薄的时候,在一列量子点中存在载流子的耦合,这将失去因使用零维系统而带来的优点。怎样优化量子点的尺寸和隔离层的厚度以便既能获得好均匀性的量子点又同时保持载流子能够限制在量子点的个体中对于获得器件的良好性能是至关重要的。
很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up”方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。
在未来的十年中,纳米科学和技术的第二次浪潮很可能发生。在这个新的时期,科学家和工程师需要征明纳米结构的潜能以及期望功能能够得到兑现。只有获得在尺寸、成份、位序以及材料纯度上良好可控能力并成功地制造出实用器件才能实现人们对纳米器件所期望的功能。因此,纳米科学的下次浪潮的关键点是纳米结构的人为可控性。
III.纳米结构尺寸、成份、位序以及密度的控制——第二次浪潮
为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于GaN材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。
—电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。在电子束光刻中的电子散射因为所谓近邻干扰效应(proximityeffect)而严重影响了光刻的极限精度,这个效应造成制备空间上紧邻的纳米结构的困难。这项技术的主要缺点是相当费时。例如,刻写一张4英寸的硅片需要时间1小时,这不适宜于大规模工业生产。电子束投影系统如SCALPEL(scatteringwithangularlimitationprojectionelectronlithography)正在发展之中以便使这项技术较适于用于规模生产。目前,耗时和近邻干扰效应这两个问题还没有得到解决。
—聚焦离子束光刻是一种机制上类似于电子束光刻的技术。但不同于电子束光刻的是这种技术并不受在光刻胶中的离子散射以及从衬底来的离子背散射影响。它能刻出特征尺寸细到6纳米的图形,但它也是一种耗时的技术,而且高能离子束可能造成衬底损伤。
—扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。此项技术已经用来刻划金属(Ti和Cr)、半导体(Si和GaAs)以及绝缘材料(Si3N4和silohexanes),还用在LB膜和自聚集分子单膜上。此种方法具有可逆和简单易行等优点。引入的氧化图形依赖于实验条件如扫描速度、样片偏压以及环境湿度等。空间分辨率受限于针尖尺寸和形状(虽然氧化区域典型地小于针尖尺寸)。这项技术已用于制造有序的量子点阵列和单电子晶体管。这项技术的主要缺点是处理速度慢(典型的刻写速度为1mm/s量级)。然而,最近在原子力显微术上的技术进展—使用悬臂樑阵列已将扫描速度提高到4mm/s。此项技术的显著优点是它的杰出的分辨率和能产生任意几何形状的图形能力。但是,是否在刻写速度上的改善能使它适用于除制造光刻版和原型器件之外的其他目的还有待于观察。直到目前为止,它是一项能操控单个原子和分子的唯一技术。
—多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。铝膜在酸性腐蚀液中阳极氧化就可以在铝膜上产生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范围。制备多孔膜的其他方法是从纳米沟道玻璃膜复制。用这项技术已制造出含有细至40nm的空洞的钨、钼、铂以及金膜。
—倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。目前,经过反应离子刻蚀后,在旋转涂敷的倍塞共聚物层中产生的图形已被成功地转移到Si3N4膜上,图形中空洞直径20nm,空洞之间间距40nm。在聚苯乙烯基体中的自组织形成的聚异戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱体)可以被臭氧去掉或者通过锇染色而保留下来。在第一种情况,空洞能够在氮化硅上产生;在第二种情况,岛状结构能够产生。目前利用倍塞共聚物光刻技术已制造出GaAs纳米结构,结构的侧向特征尺寸约为23nm,密度高达1011/cm2。
—与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。各种尺寸的聚合物球珠是商业化的产品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比较困难的。用球珠单层膜已能制备出特征尺寸约为球珠直径1/5的三角形图形。双层膜纳米球珠掩膜版也已被制作出。能够在金属、半导体以及绝缘体衬底上使用纳米球珠光刻术的能力已得到确认。纳米球珠光刻术(纳米球珠膜的旋转涂敷结合反应离子刻蚀)已被用来在一些半导体表面上制造空洞和柱状体纳米结构。
—将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法,比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。其中微接触印刷法已被证明只能用来刻制特征尺寸大于100nm的图形。复制铸模法的可能优点是ellastometric聚合物可被用来制作成一个戳子,以便可用同一个戳子通过对戳子的机械加压能够制作不同侧向尺寸的图形。在溶剂辅助铸模法和用硬模版浮雕法(或通常称之为纳米压印术)之间的主要差异是,前者中溶剂被用于软化聚合物,而后者中软化聚合物依靠的是温度变化。溶剂辅助铸模法的可能优点是不需要加热。纳米压印术已被证明可用来制作具有容量达400Gb/in2的纳米激光光盘,在6英寸硅片上刻制亚100nm分辨的图形,刻制10nmX40nm面积的长方形,以及在4英寸硅片上进行图形刻制。除传统的平面纳米压印光刻法之外,滚轴型纳米压印光刻法也已被提出。在此类技术中温度被发现是一个关键因素。此外,应该选用具有较低的玻璃化转变温度的聚合物。为了取得高产,下列因素要解决:
1)大的戳子尺寸
2)高图形密度戳子
3)低穿刺(lowsticking)
4)压印温度和压力的优化
5)长戳子寿命。
具有低穿刺率的大尺寸戳子已经被制作出来。已有少量研究工作在试图优化压印温度和压力,但显然需要进行更多的研究工作才能得到温度和压力的优化参数。高图形密度戳子的制作依然在发展之中。还没有足够量的工作来研究戳子的寿命问题。曾有研究报告报道,覆盖有超薄的特氟隆类薄膜的模板可以用来进行50次的浮刻而不需要中间清洗。报告指出最大的性能退化来自于嵌在戳子和聚合物之间的灰尘颗粒。如果戳子是从ellastometric母版制作出来的,抗穿刺层可能需要使用,而且进行大约5次压印后需要更换。值得关心的其他可能问题包括镶嵌的灰尘颗引起的戳子损伤或聚合物中图形损伤,以及连续压印之间戳子的清洗需要等。尽管进一步的优化和改良是必需的,但此项技术似乎有希望获得高生产率。压印过程包括对准、加热及冷却循环等,整个过程所需时间大约20分钟。使用具有较低玻璃化转换温度的聚合物可以缩短加热和冷却循环所需时间,因此可以缩短整个压印过程时间。
IV.纳米制造所面对的困难和挑战
上述每一种用于在衬底上图形刻制的技术都有其优点和缺点。目前,似乎没有哪个单一种技术可以用来高产量地刻制纳米尺度且任意形状的图形。我们可以将图形刻制的全过程分成下列步骤:
1.在一块模版上刻写图形
2.在过渡性或者功能性材料上复制模版上的图形
3.转移在过渡性或者功能性材料上复制的图形。
很显然第二步是最具挑战性的一步。先前描述的各项技术,例如电子束光刻或者扫描微探针光刻技术,已经能够刻写非常细小的图形。然而,这些技术都因相当费时而不适于规模生产。纳米压印术则因可作多片并行处理而可能解决规模生产问题。此项技术似乎很有希望,但是在它能被广泛应用之前现存的严重的材料问题必须加以解决。纳米球珠和倍塞共聚物光刻术则提供了将第一步和第二步整合的解决方案。在这些技术中,图形由球珠的尺寸或者倍塞共聚物的成分来确定。然而,用这两种光刻术刻写的纳米结构的形状非常有限。当这些技术被人们看好有很大的希望用来刻写图形以便生长出有序的纳米量子点阵列时,它们却完全不适于用来刻制任意形状和复杂结构的图形。为了能够制造出高质量的纳米器件,不但必须能够可靠地将图形转移到功能材料上,还必须保证在刻蚀过程中引入最小的损伤。湿法腐蚀技术典型地不产生或者产生最小的损伤,可是湿法腐蚀并不十分适于制备需要陡峭侧墙的结构,这是因为在掩模版下一定程度的钻蚀是不可避免的,而这个钻蚀决定性地影响微小结构的刻制。另一方面,用干法刻蚀技术,譬如,反应离子刻蚀(RIE)或者电子回旋共振(ECR)刻蚀,在优化条件下可以获得陡峭的侧墙。直到今天大多数刻蚀研究都集中于刻蚀速度以及刻蚀出垂直墙的能力,而关于刻蚀引入损伤的研究严重不足。已有研究表明,能在表面下100nm深处探测到刻蚀引入的损伤。当器件中的个别有源区尺寸小于100nm时,如此大的损伤是不能接受的。还有就是因为所有的纳米结构都有大的表面-体积比,必须尽可能地减少在纳米结构表面或者靠近的任何缺陷。
随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用X光和EUV的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂樑能否使它达到可以接受的刻写速度。利用转移在自组装薄膜中形成的图形的技术,例如倍塞共聚物以及纳米球珠刻写技术则提供了实现成本不是那么昂贵的大面积图形刻写的一种可能途径。然而,在这种方式下形成的图形仅局限于点状或者柱状图形。对于制造相对简单的器件而言,此类技术是足够用的,但并不能解决微电子工业所面对的问题。需要将图形从一张模版复制到聚合物膜上的各种所谓“软光刻“方法提供了一种并行刻写的技术途径。模版可以用其他慢写技术来刻制,然后在模版上的图形可以通过要么热辅助要么溶液辅助的压印法来复制。同一块模版可以用来刻写多块衬底,而且不像那些依赖化学自组装图形形成机制的方法,它可以用来刻制任意形状的图形。然而,要想获得高生产率,某些技术问题如穿刺及因灰尘导致的损伤等问题需要加以解决。对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术会成为最终的纳米刻写技术还有待于观察。
另一项挑战是,为了更新我们关于纳米结构的认识和知识,有必要改善现有的表征技术或者发展一种新技术能够用来表征单个纳米尺度物体。由于自组装量子点在尺寸上的自然涨落,可信地表征单个纳米结构的能力对于研究这些结构的物理性质是绝对至关重要的。目前表征单个纳米结构的能力非常有限。譬如,没有一种结构表征工具能够用来确定一个纳米结构的表面结构到0.1À的精度或者更佳。透射电子显微术(TEM)能够用来研究一个晶体结构的内部情况,但是它不能提供有关表面以及靠近表面的原子排列情况的信息。扫描隧道显微术(STM)和原子力显微术(AFM)能够给出表面某区域的形貌,但它们并不能提供定量结构信息好到能仔细理解表面性质所要求的精度。当近场光学方法能够给出局部区域光谱信息时,它们能给出的关于局部杂质浓度的信息则很有限。除非目前用来表征表面和体材料的技术能够扩展到能够用来研究单个纳米体的表面和内部情况,否则能够得到的有关纳米结构的所有重要结构和组份的定量信息非常有限。
V.展望
纳米技术的优缺点篇6
【关键词】:人造石材;纳米二氧化钛;光催化;杀菌
一、前言
随着国内房地产行业的蓬勃发展,室内建筑装饰材料已进入高速发展期。天然大理石质感柔和,美观庄重,格调高雅,花色繁多,是装饰豪华建筑的理想材料,使用石材进行室内装修,已经越来越被人所接受。但是天然石材同样也有很多缺点,譬如天然大理石内部缺陷多,色差大,加工易破损,且带有部分辐射等。由于天然石材属于不可再生资源,随着大规模的开采,优质天然石矿源越来越少,伴随的是对自然环境的严重破坏。为改变这种局面,国外很早就开始人造石材的开发与利用,人造石材对原料的要求不高,各种天然石材开采之后的尾矿都可以作为人造石材的主要原料进行使用。人造石材在吸收了天然石材优点的同时,也规避了天然石材的各种缺点,比如内部结构无缺陷,无辐射,无色差,易加工等优点。随着人们对人造石材的认识以及国内各大厂家不断加大新产品的开发力度,人们选择人造石材进行室内装饰的比例已经越来越高。
随着生活水平的提高,我们对健康的要求也越来越强烈,但是,生活中无所不在的细菌在不断的危害着我们的健康,如果有一种材料能够自动杀死细菌,保护我们的健康,无疑将会得到我们更多的青睐。针对市场的这种需求,我们公司进行了这种杀菌人造石产品的研制,我的研究课题就是怎样使人造石材具有这种自动杀菌功能,保护人们的健康。
二、杀菌机理
目前抗杀菌材料按作用机理主要分为二类:第一类是重金属离子的杀菌,在材料成分里添加可杀菌的重金属材料如含银、铜离子的化工原料等,利用重金属离子的析出进行杀菌,但因为其对人体也有一定的危害,现在很多国家都已经不允许采用此方法来进行杀菌;第二类是纳米二氧化钛光催化杀菌,在材料表面涂覆一层二氧化钛薄膜,利用二氧化钛在光照下能使空气中的氧气变成活性氧,使水产生活性氧自由基的特性,从而发挥抗杀菌的作用。本次研究使用纳米二氧化钛的光催化原理进行杀菌人造石材的研制。
二氧化钛的杀菌机理:当二氧化钛纳米粒子受到不小于禁带宽度能量光子照射后,电子从价带跃迁到导带,产生了电子-空穴对,电子具有还原性,空穴具有氧化性,空穴和二氧化钛纳米粒子表面吸附的水反应生成氧化性很高的•OH自由基,活泼的•OH自由基可以将细菌等有机物氧化成CO2和H2O。这一系列反应可以用下列反应式表示为:
在光照下,二氧化钛表面产生了非常活泼的羟基自由基,超氧离子自由基以及•OH自由基,这些氧化性很强的活泼自由基,能够将各种有机物及细菌直接氧化成CO2和H2O。
有研究表明,纳米粒子的光催化活性明显优于体相材料,一般认为这主要是由以下原因造成的:纳米半导体粒子所具有的量子尺寸效应使其导带与价带能级变为分立的能级,能隙变宽,导带电位变得更负,而价带电位变得更正。这意味着纳米半导体粒子获得了更强的还原和氧化能力,从而提高其光催化活性。因此,虽然钛白粉也有一定的光催化效果,且价格便宜,但因为反映速度慢,效果不够明显。而纳米二氧化钛有很强的量子尺寸效应,一般选择TiO2做为杀菌材料,都是使用TiO2纳米粉体。
三、超洁亮技术
纳米二氧化钛材料的杀菌特性如此优秀,但是要怎样将这种杀菌材料应用到人造石杀菌产品的工业化生产中呢,目前,我主要采用陶瓷行业相对比较成熟的“超洁亮”技术来进行工业化生产。
“超洁亮”技术通过一种简单、经济的制膜工艺,在陶瓷抛光砖的表面形成一层不影响抛光砖表面花色的、透明、持久有效的亲水性纳米材料保护膜层,该纳米保护膜不仅能完全填塞修补砖面的气孔和微裂纹,使砖面具有极强的双疏防污功能,同时可防水性和油性物质污染,还可抗菌和防腐,达到自洁的效果。
保护膜层的材料是一种液体纳米功能性材料,材料的粒度在5nm~1μm之间。陶瓷抛光砖表面的毛细气孔和微裂纹一般在几个μm到几十个μm之间,防护膜材料的粒径达到纳米级.超洁亮生产线通过特殊的磨具,配以额定的磨具工作压力、工作转速和反应温度(由磨具摩擦热提供),对砖面用纳米材料进行恰到好处的挤压和抛刷。在此额定工作条件下,超细纳米材料水剂被强制快速均匀地渗透和挤压进抛光砖表面的微孔和凹坑中,使抛光砖表面的微孔和微裂纹迅速得到填充,多余的材料同时被磨具刷扫清除。
涂覆到瓷砖表面的防护材料通过材料的物理、化学作用,在一定的时间内,形成高分子聚合物。聚合过程中体积发生一定程度的膨胀,加上微孔和微裂纹的压迫作用,形成坚固的分子键,成为与抛光砖表面结成一体的、紧密的、高强度、高硬度的致密防护膜,阻止各种污物向瓷砖内渗透,达到保持砖面防污效果和极强的抗磨性。
四、试验过程及效果
我用二氧化钛纳米粉体及超洁亮纳米液,配制成全新的超洁亮纳米液,进行杀菌型人造石材的试制试验,试验步骤如下:
1.配料―根据人造石材配方将各种大理石颗粒、添加剂、色料、不饱和树脂等原材料混合搅拌均匀;
2.压制―将配制好的原料注入特定的压制容器中,在真空下加压振动,使空气尽量排出,压制一定时间后拆模放置,让方料自然固化;
3.开介―根据需要,将人造石方料开介成所需要的规格,一般主要是加工成市场通用的标准厚度人造石板材;
4.抛光―将开介好的人造石板材固定厚度,并进行表面抛光处理;
5.超洁亮―选择两块人造石板材分别进行超洁亮处理,一块用全新配制的纳米液处理,一块采用普通纳米液进行处理;
6.抗菌对比试验―超洁亮处理完的两块人造石板材自然放置一天,然后在显微镜下观测板材表面的有机微生物数量;
7.试验结论:通过观测发现,添加了二氧化钛纳米粒子进行超洁亮的人造石板材表面有机微生物数量相比另外一块产品有明显减少。
另外我还做了钛白粉与二氧化钛纳米粒子的对比试验,发现添加钛白粉处理的板材,其表面有机微生物数量也要少于普通处理板材,但和二氧化钛纳米粒子处理过的产品比较,还是存在一定差距。
五、结束语
利用二氧化钛的表面光催化杀菌效果及陶瓷行业的“超洁亮”技术,我们成功开发出具有自杀菌效果的人造石材,这种石材具有以下优点:
1.在光照的情况下自动清洁与杀菌,可保护人们身体健康,尤其是有小孩的家庭,减少小孩子因细菌污染而导致生病;
2.生产技术难度小,成本低,“超洁亮”技术应用在建材行业已经非常普遍,纳米二氧化钛的生产已经工业化,不存在任何的技术瓶颈;
【纳米技术的优缺点(6篇) 】相关文章:
小学学校工作总结范文(整理5篇) 2024-06-19
季度工作总结范文(整理4篇) 2024-06-11
转正工作总结范文(整理10篇) 2024-05-21
数学教研组教学总结范文(整理10篇) 2024-05-20
幼儿园大班的工作总结范文(整理4篇 2024-05-15
班主任家访工作总结范文(整理4篇) 2024-05-15
慢病工作总结范文(整理7篇) 2024-04-28
奇妙的想象(6篇) 2024-07-31
纳米技术的优缺点(6篇) 2024-07-31
奇妙汉字(6篇) 2024-07-31