纳米技术的性质篇1
关键词:纳米技术;食品科学;纳米食品
中图分类号:F416文献标识码:A
一.引言
纳米技术属于新型交叉性学科,属于同应用开发技术密切相关的高新技术。纳米技术在多种科学领域中得到广泛应用,并逐渐成为社会发展的重要支柱产业。随着纳米技术逐渐成熟,开始被应用到食品科学中。
二.纳米技术的含义
纳米技术(nanotechnology)是在80年代末诞生并正在蓬勃发展的一种高新科技,是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。它是以现代科学(介观物理、混沌物理、量子力学、分子生物学)和现代技术(微电子和扫描隧道显微镜技术、计算机技术、核分析技术)为基础,纳米科学技术还会引发一些其他科学技术。纳米技术即在1-100mm范围中研究物质反应与结构,并进行纳米结构检测的新型技术,纳米技术为生物制药与生命科学的研究提供了高效的研究方式,当物质粒度达到纳米级别之后,其化学性质与物理性质会发生变化,这就是“纳米效应”。“纳米效应”包括量子尺寸效应、小尺寸效应、界面效应与表面效应等内容,纳米技术有着十分广泛的影响面,能够向不同的领域中渗透,并带动能源产业、信息技术以及食品科学等学科的发展。科学家发现,当物质小到1~100纳米时,由于其量子效应、物质的局域性及巨大的表面及界面效应,物质的很多性能将发生质变,呈现出许多既不同于宏观物体,又不同于单个孤立原子的奇异现象(白春礼,2001)。即在原子、分子及纳米尺度上,物质表现出极其新颖的物理、化学和生物学特性,该特性能被人类学习、掌握、控制和利用,从而使得人类社会现存的一切发生翻天覆地的变化。
三.食品科学中的纳米技术
1.纳米食品
纳米食品是指在生产、加工或包装过程中采用了纳米技术的食品。纳米食品有广义和狭义之分,从广义来说,在食品生产加工和包装中,利用了纳米技术的都可以称为纳米食品;从狭义来说,只有对食品成分本身利用纳米技术改造和加工的产品,才称得上是纳米食品。纳米食物就是用纳米技术处理其中的营养成分,让人根据需要来控制这些成分何时起作用的食品。例如用特殊的纳米外衣把各种口味或各种营养的成分包裹起来,纳米外衣不会受消化系统影响,但人却能控制纳米外衣何时打开,把包裹的成分释放出来。
纳米食物还可以让同样的食物在不同人口里出现不同的味道。例如同样一块蛋糕,喜欢甜食的人感觉蛋糕是甜的,喜欢烤肉味的人感觉蛋糕是一块烤肉,而喜欢泡椒味的人则感觉蛋糕像是泡椒凤爪……这是因为蛋糕里有各种各样口味的成分,但这些成分都是被纳米外衣包裹起来的,在吃之前,人可以根据自己的口味对蛋糕进行激发,例如冷冻一下,蛋糕是甜味,常温下蛋糕是烤肉味,而加热一下,蛋糕是泡椒味。温度是一种激发方式,当然还有电磁波等其他激发方式。
2.纳米技术在食品工业中的应用
(1)纳米滤膜
纳米滤膜即用纳米材料做成孔径不同的孔道,以便用于分离分子结构存在微小差别的多组分混合物。在分离玉米淀粉时,利用纳米滤膜可以将黄酮类、浓缩香菇多糖等有生物活性的功能因子进行浓缩并分离。也可运用该技术提取和分离牛乳中的免疫球蛋白,还可用于菜籽、小麦、花生、大豆、芝麻蛋白的分离提取,也可用于澄清果蔬汁。随着纳米技术的发展,新的纳米滤膜具备了超强的过滤能力,利用成本低的纳米滤膜,不仅可以直接净化水源、清除环境污染,还可将海水净化为饮用水。
(2)纳米抗菌材料
纳米抗菌材料具有杀死和阻止细菌发育,防止各种微生物生长的功能。其核心成份是抗菌剂,同时具备抑菌和杀菌双重功效,而且抗菌作用的持久性和安全性更强。利用此特性,用纳米材料做成的冰箱可以抗菌,并可延长食品的保藏期限;利用纳米材料做的无菌餐具也已面世。根据纳米抗菌材料对微生物的作用机理不同可分为两类:一类是光催化半导体材料,利用光催化作用与H2O或OH-反应生成一种具有强氧化性的羟基而杀死病毒。如纳米氧化锌、二氧化钛等材料。另一类是抗菌活性金属材料,如银系无机抗菌材料,其利用Ag+可使细胞膜上的蛋白失活而杀死细菌;将纳米抗菌材料制成的纳米涂料涂在食品企业的加工车间、原料库、成品库、贮藏库、装运箱等的内、外表面上,能阻止油污、水及灰垢的存留,从而防止外界对食品的污染。
(3)纳米紫外线屏蔽材料
紫外线杀菌技术可应用于食品工业,但是高能量的紫外线照射后,有时会破坏食品中的维生素和芳香化合物,有时会引起食品中的油脂氧化、高分子材料老化、色素分解等成份的改变,从而导致食品腐败变质。因而,将纳米无机超微粒子紫外线吸收剂(氧化锌、氧化铁、二氧化钛等)添加到包装材料中,可以取代目前食品工业中紫外线杀菌方法,如将0.1~0.5%的纳米二氧化钛添加到食品包装材料中,即可使食品保鲜,又可避免紫外线对食品的破坏作用。
(4)纳米技术在食品检测中的应用
随着计算机技术的飞速发展,使得纳米传感器技术也得到了惊人的发展,并已在食品安全监测中得到广泛的应用。所谓纳米生物传感器技术,采用选择性结合靶分子的生物探针,对食品进行安全监测的技术。因为,纳米材料本身就是非常敏感,对于不均匀的生物与化学物质反应灵敏,将纳米技术与生物学、计算机技术、电子材料相结合,可以制备新型的传感器件,并提高食品安全监测效率。例如与生物芯片等技术结合,可以使分子检测更加简便、高效的纳米生物传感器。近年来,人们通过纳米生物传感器技术可以实现对食品安全、临床诊断与治疗的快速、有效、灵敏地检测。例如,在传统的检测领域,尤其是监测微量细菌时需要扩增或富集样本中的目标菌,从而无形中增加监测步骤,同时过程繁琐而费时费力,然而,利用纳米技术与表面等离子体共振、石英晶体微天平等研制而成的纳米生物传感器,不仅能够大大减少检测所需的时间,还可以提高检测的灵敏度,进而提高监测效率与精确度。
3.食品科学中纳米技术应用带来的问题
2009年,厦门市第一医院肠胃科出现了大量因服用商家声称的以纳米技术加工而成的纳米珍珠粉而造成的肠胃型疾病病人。其原因主要是听信商家对于珍珠粉美白养颜功能的宣传而食用。可见,纳米材料本身具有的独特优点使得它们越来越被人们所认同,但其未知特性造成的安全隐患以及人们对其特性缺乏普遍认知而易被欺骗的问题也越来越明显。一方面,威胁不仅来源于物理层面也存在于化学层面上。人类和纳米材质密切接触(包括住房的涂料、化妆品和衣服)后,会不会发生无法预知的生物效应,从而有更多的对人体有害的物质产生(比如铝在常态下无毒性,而在纳米状态下和空气接触后就会有毒性),也需要进一步的研究。另一方面,消费者对于自己所接触的纳米产品的性能和可能存在的风险的知情权的保护也需加大力度。因为只有更多地了解了纳米产品的特质,消费者辨别纳米物质、保护自身权利的能力才能提高。这些问题都是由于我国并不健全的纳米产品市场准入和技术标准体系造成的,因此,国家应逐步完善健全这些标准体系,从而保证纳米产品市场的纯洁性和安全性。
四.结束语
在食品科学中,纳米技术的应用能够改变食品原油结构,产生多种多样的新型食品,从而改善人们的饮食结构,保障人们的健康生活。同时,由于食品科学中纳米技术有待进一步验证对人体的有害性,在食品应用中,要妥善处理,避免造成人身伤害事故发生,从而保障食品安全。
参考文献:
[1]李倩,刘晨光.纳米技术在食品科学中的应用研究进展[J].中国农业科技导报,2009,11(6):24-29.
[2]宋冠岐.基于食品科学中纳米技术的研究[J].山西青年(下半月),2013,(12):183-183.
纳米技术的性质篇2
1996~2003年,NASA在纳米技术发展早期扮演了重要角色。NASA认为纳米技术在减小航天器质量、提高传感器精度、缩小飞行器载设备尺寸等方面有巨大潜力。因此NASA早在1996年即开始纳米技术研究,先后在艾姆斯(Ames)研究中心、格伦(Glenn)研究中心、兰利(Langley)研究中心和约翰逊航天中心(JSC)开展了纳米技术研究。同时还与大学开展合作,共同研究前沿纳米技术。
受2003年“哥伦比亚”号航天飞机失事和2004年开始“星座”计划的影响,NASA在国会未给予足额研发资金的情况下,被迫削减了包括纳米技术在内的许多其他项目的资金预算,导致2003~2010年期间的纳米技术研究规模大幅缩减、进展缓慢,大部分研究项目被中断。
2009年奥巴马上台后调整了NASA发展方向。纳米技术的发展重新受到重视。2010年NASA首席技术官办公室(OCT)《纳米技术路线图(草案)》,认为纳米技术在减小飞行器质量、增强器件功能和延长寿命、提升能源产生/存储/推进能力、改进宇航人员健康管理等四方面具有重要潜力;同时列出了当前纳米技术研究要解决“五大难题”:(1)纳米增强推进剂;(2)用于功率检测和高速电子学的纳米尺度集成电路;(3)基于纳米技术的能量收集和存储系统;(4)可制作轻质量、高强度第二级航天器部件的纳米复合材料;(5)可用于抗辐照高速纳米器件的石墨烯材料。由此在NASA在2010~2012年期间大大加强了对纳米技术研究的支持力度。
NASA发展纳米技术所面临的问题
尽管从2010年起,NASA再次重视纳米技术的发展并给予相应资金支持,但NASA还面临着一系列问题:
(1)无法保证对高风险、高回报、长周期项目的持续资金投入。
NASA的项目通常需要长期的投资和持续的技术研发,但从目前NASA资金的投入情况可以看出,当每个预算周期或总统任期的工作重心发生转移时,项目可能会被突然启动或停止,常常导致研究项目的一再重复和资源浪费。计划的重复起止和美国对载人航天能力的放弃,显示出美国航天政策无法保证研究和计划的可持续性。
(2)分散的资助模式阻碍研究机构间交流合作,导致无序竞争。
NASA的项目由多个分散的资金提供支持,NASA多个研究团队同时开展对纳米技术的研发。分散开发易导致各研究中心之间及中心内部的无序竞争和重复。例如,同属JSC的“微机电系统(MEMS)和纳米技术计划”与“应用纳米技术项目”在研究相似的内容。
针对需求进行的开发,无法普遍提升纳米技术的研究水平,还易导致纳米技术的研究因项目停止而中断或受阻。多个研究中心对纳米技术达成共识不仅困难,而且费时费力,不利于取长补短和成果共享。
(3)技术成熟度不高,积极性不够,成果转化效率低。
尽管从F-35用纳米复合材料到卫星用抗辐照存储器再到木星探测器“朱诺”用碳纳米结构浸渍纤维,纳米技术已在航空航天领域表现出巨大应用前景,但NASA应用自研的纳米技术到天上的实例仅有一个:2009年1月将纳米传感器技术集成到国际太空站上,用于在太空舱中探测空气品质。2005年后,NASA一部分纳米技术研究项目被终止,另一部分则停留在技术成熟度初级阶段。新技术由于在开发与应用中遇到困难而被忽视和遗弃,或者转而由其他机构接手研究,如Smalley小组的量子线项目,就转交给了空军研究实验室。
(4)纳米技术路线图缺乏具体的预算和合作建议。
尽管2010年出台的《纳米技术路线图(草案)》明确列出了详细的纳米技术的应用领域和航天亟需解决的问题,希望使用“推动”和“拉动”两种体制共同促进纳米技术发展,但在资金分配和合作开展方面缺乏具体指导和建议,难以改变技术研究和技术应用方案不匹配的问题。
对NASA发展纳米技术的建议
纳米技术的性质篇3
作为一种几何尺度的量度单位,一纳米等于十亿分之一米,千分之一微米,大约是三四个原子的宽度。人们在研究物质构成的过程中发现,在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性并通过物理或化学方法制造出具有特定功能产品的科学技术,就称之为纳米技术。一般来说,纳米技术所制造物体的体积不超过数百个纳米,其宽度相当于几十个原子聚集在一起的宽度。由此可见,纳米技术是在现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用探索紧密联系、学科之间交叉性很强的新型综合科学技术。
在现代科学技术快速发展的今天,纳米科技成果已经在现代科技的多个学科领域得以广泛渗透和发展,其中就包括与人们日常生活密切相关的日用化学工业领域。我们知道,化妆品作为一种特殊日用化工产品,由各种原料或添加剂经过合理配方加工而成。因此,化妆品学也通常被认为是一门交叉性很强的综合学科,其主要涉及物理、化学、生物、生理、化工工艺、化工工程机械、医药卫生、材料等多种学科。因此,在化妆品产品的研发和生产过程中,将纳米技术科研成果转化并应用到新的化妆品产品中,能从根本上大大提高化妆品的性能、科技含量及市场竞争力。正因为如此,纳米技术有望在未来的化妆品产业中得到广泛的应用。
一、纳米科技与化妆品纳米化
1.纳米科技与纳米级功能材料
目前,纳米科学的研究主要集中在纳米材料领域,取得的成果也多在此。因此,作为纳米科技的基石,纳米材料和纳米结构是当今新兴材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近转化为应用的重要组成部分。
在过去的十几年里,广大科技工作者在纳米材料的制备、性质、表征乃至应用方面进行了系统和规范性研究,尤其在功能材料方面做了大量的基础研究工作。所谓功能材料主要是指基于物质的光、电、磁等功能开发的材料。研究发现,纳米级功能材料主要可产生小尺寸效应、量子化尺寸、宏观量子隧道效应以及表面效应。这些功能都是与物质的电子层结构和能级密切相关的。当物质的粒径下降至纳米级时,由于此时物质的粒径与电子的德布罗意波长接近,因此量子化效应、小尺寸效应等对物质的能级和电子跃迁的影响骤然增加,从而影响了材料性能。
2.纳米材料与化妆品纳米化
一般认为,化妆品对皮肤的清洁、护肤、营养和保护作用主要取决于通过渗透或吸收进入皮肤中的各种功效成分,而传统工艺所生产的各种活性成分却往往难以充分发挥作用。我们知道,化妆品的各种性能及质量除了与配方、生产设备和工艺密切相关外,关键取决于化妆品中功效成分的粒子大小。功效成分的粒子越小,就越容易透过皮肤角质层而到达皮肤深层,起到应有的护肤和疗肤效果,反之,即便是很好的配方也不能对皮肤产生应有的护理和保养作用。基于此,化妆品的研制者一直致力于化妆品功效添加剂粒子细小化的工作,这一点与纳米技术点的发展是不谋而合。结合纳米生物学、纳米材料学等学科优势将各种化妆品材料/原料纳米化的技术,即为化妆品纳米化技术。利用纳米化技术可使各种纳米级化妆品功效成分颗粒能够顺利渗透到皮肤深层,并通过其产生的表面效应和尺寸效应最大限度地发挥护肤、疗肤效果。目前,对纳米化妆品的研制,第一步是要突破微米级(100~300nm),第二步就是进入国际上所公认的纳米尺度(1~100nm)范围内。
化妆品功效成分纳米化后,对人体皮肤所产生的两个主要效应为表面效应和尺寸效应。(1)表面效应:众所周知,球形粒子的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比,随着粒子直径变小,比表面积将会增大,说明表面原子所占的百分数将会显著地增加;同时由于处于表面的原子数较多,表面原子的晶场环境和结合能与内部原子不同而使得表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质,易与其它原子相结合而稳定下来,故具有很大的化学活性和反应特性,晶体微粒化使这种活性表面原子增多,其表面能大大增加,这样就使得化妆品中功效成分的粒子能充分发挥其功效。如:能够充分抑制酪氨酸酶的活性,分解和阻断黑色素的形成和上浮的通过,达到使人体肌肤白皙的目的;能够充分与病原体接触,达到抑菌和杀菌的作用效果;能够充分散射和吸收紫外线,达到防晒的目的。(2)尺寸效应:人体皮肤随年龄的增长及环境条件的不同而有不同程度的变化,如:真皮中的胶原蛋白减少、分子变硬,致使皮肤逐渐失去弹性和韧性,出现皱纹,皮肤抵抗力、免疫力和排除废物的能力下降,从而出现和加深了各种色素斑点等。因此要在化妆品中加入一些功效成分,对皮肤的生理结构、细胞组成成分及新陈代谢进行修复、保养和调整,使皮肤焕发出青春活力。皮肤的渗透和吸收作用与物质粒子的大小密切相关。随着化妆品功效成分纳米化程度的提高,皮肤组织对功效成分的渗透和吸收就会变得更加快捷和深入,从而能够对深层皮肤起到深层清洁护理、抑菌杀菌、促进细胞新陈代谢、补充营养和水分等作用,达到增强肌肤弹性和表面张力的目的,并使人体肌肤最终能得到更加完美的呵护和保养,更加健康美丽。
二、纳米技术在化妆品中的应用
1.在化妆品添加剂经皮给药中的应用
化妆品纳米化技术的一个方向是发展化妆品原料纳米微粒技术,即将功效成分包裹在直径纳米尺度的微粒中。载药纳米微粒作为纳米技术与现代药学结合的产物之一,具有许多作用:容易被组织或细胞吸收,恒速缓释功效成分并确保功效成分在较长时间维持在有效浓度内,以及增加有效成分稳定性,减少特殊添加剂对皮肤的刺激等,因此,载药纳米微粒已成为化妆品活性成分的理想载体和新剂型,在化妆品添加剂经皮给药及控释和缓释方面初显奇效。纳米微粒主要包括纳米微胶囊和纳米微球。微胶囊是指用聚合物薄膜将微量固体、液体或气体物质包裹制成微小囊状物,厚壁仅为10nm。微胶囊可有效防止各种有效成分间的相互干扰,控制添加剂的释放速度。纳米微球为一种多孔的微粒载体,直径为纳米级。纳米微球由于多孔而使球体表面积增加,从而具有更强的吸附能力,可运载更多的有效成分,同时也具有缓释和定向释放的效应。目前,应用上述两种新型载体的多种化妆品已在国外成功上市,市场前景已被业内人士看好。
2.在化妆品乳化技术中的应用
乳化技术是膏霜和乳液类化妆品制备的重要技术。传统乳化工艺制备的化妆品膏体其内部结构一般为胶团状或胶束状,直径通常为微米级,对皮肤渗透能力很弱,不易通过表皮和皮肤附属腺体两条主要途径被皮肤所吸收。通过纳米乳化技术所制备的化妆品,其膏体微粒直径可达到纳米级。这种化妆品在皮肤各层的渗透性可以明显增加,而皮肤的选择性吸收物质的利用率随之大为提高。目前,市场上销售的此类护肤品在美白、抗衰老等功效方面效果更好。另外,由于此类护肤品不含或少含表面活性剂,因此,尤其适用于敏感皮肤消费者。
3.在防晒产品中的应用
防晒化妆品中防晒剂的选择对防晒产品功能具有决定性作用,是防晒化妆品配方的核心所在。目前,国内传统防晒产品中,常用的防晒剂主要为化学防晒剂(有机防晒剂)和物理防晒剂(无机防晒剂),其中以化学防晒剂为多。化学防晒剂品种多,效果好,但光稳定性相对较差;物理防晒剂光稳定性好,但使用时含量不宜过高。因此,在最大限度地追求防晒剂的安全性、高效、广谱和降低成本方面,对无机材料防晒剂的研究和开发以及多种防晒剂复合使用的研究一直是该领域的研究热点。最近几年,应用纳米技术开发生产的多种无机防晒剂在化妆品中的应用已经初显良好的应用前景。纳米无机材料在防晒化妆品中应用,可有效解决化学防晒剂的缺点,提高物理防晒剂的防晒效果。目前,这些防晒剂中研究和应用最多的是纳米TiO2,其次为纳米ZnO和SiOx。其他一些金属氧化物的纳米粒子如Fe2O3,Cr2O3,尽管也具有紫外吸收性质,但是由于毒性或过深的颜色,限制了他们在化妆品中的使用。纳米TiO2作为紫外吸收剂有其独特的长处。首先,纳米TiO2在UVA和UVB波段都表现出吸收,是广谱紫外吸收剂。其次,除了能够吸收紫外线,它还可以在一定程度上散射紫外线,这是传统的有机紫外吸收剂所不具备的特点。纳米ZnO也具有类似特点,但吸收峰主要在UVA波段。在美国,FDA已经批准TiO2和ZnO为化妆品的原料,而日本甚至要求防晒化妆品中必须加入纳米TiO2。目前,国内外以纳米TiO2和纳米ZnO为原料的防晒化妆品已经面市。
4.在天然药物化妆品中的应用
近年来,随着人们对回归自然需求的增加,天然药物化妆品以其独特的功效和副作用少而在市场上倍受青睐。然而,大多数中药添加剂有效成分存在分子量大和溶解度差所导致的吸收差利用率低等问题。为了提高药物的吸收率,利用纳米技术直接将难溶解的中草药纳米化,制备成化妆品添加剂,可有效增加中药添加剂有效成分溶解速率和接触面积,可使皮肤对天然药物成分的吸收更加顺利,从而使天然药物药效得以充分发挥。
“纳米中药”是我国科研工作者首先提出的研究方向。徐辉碧教授等人在对雄黄进行纳米化处理后,发现其对肿瘤细胞S180和上皮细胞ECV-304的细胞毒性和细胞凋亡作用呈现明显的尺寸效应。纳米石决明在对血清微量元素的药效上也表现出类似作用。这些研究充分体现了中药的纳米化对其效果提高的影响。采用纳米化的人参、灵芝、黄芪等代替相应提取物,在很大程度上提高了药物的吸收率和利用率,同时在一定意义上达到了延长药效的效果。因为纳米化的中药吸收很快,但是释放却不像提取物那样迅速,是相对缓慢的释放过程。这对功能性化妆品具有重要意义。如人参、芦荟、灵芝和黄芪等经纳米化后添加到化妆品中,其产品功效可明显提高。因此,中药添加剂有效成分纳米化技术在天然药物化妆品中的应用具有非常重要的意义。
5.在化妆品包装材料中的应用
纳米化材料可广泛应用于化妆品包装材料中,其中应用最为广泛的是纳米塑料。纳米塑料的特点是具有耐高温、耐磨、外观好(透明度和光泽度)、重量轻,而且质地坚硬等良好的物理性状;同时,纳米塑料还有耐化学腐蚀、耐老化、不生锈和无毒等特点;此外,纳米塑料还有物理祛臭和抗菌作用。因此,纳米塑料在化妆品行业中将会有广阔的应用前景。
三、展望
纳米技术的性质篇4
关键词纳米技术;纳米生物学;DNA纳米技术
20世纪80年代才开始研究的纳米技术在90年代获得了突破性进展。最近美国《商业周刊》列出了21世纪可能取得重大突破的三个领域:一是生命科学和生物技术;二是从外星球获取能源;三是纳米技术。所谓纳米技术(Nanotechnology)是指在小于100nm的量度范围内对物质和结构进行制造的技术,其实就是一种用单个原子、分子制造物质的科学技术[1]。纳米技术在新世纪将推动信息技术、生物医学、环境科学、自动化技术及能源科学的发展,将极大的影响人类的生活,衣、食、住、行、医疗等方面。本文将围绕纳米技术给21世纪的生物医学可能带来影响作一概述。
1纳米生物学的研究对象
有人把在纳米尺度(水平)上研究生命现象的生物学叫做纳米生物学。纳米结构通常指尺寸在1nm~100nm范围的微小结构。1纳米等于10-9m,即1m的十亿分之一。我们知道,细胞具有微米(10-6m)量级的空间尺度,生物大分子具有纳米量级的空间尺度。在它们之间的层次是亚细胞结构,具有几十到几百纳米量级的空间尺度。显然在纳米水平上研究生命现象的纳米生物学,它的研究对象就是亚细胞结构和生物大分子体系。由于纳米微粒的尺寸一般比生物体内的细胞、红细胞小得多,这就为生物学研究提供了一个新的研究途径即利用纳米微粒进行细胞分离、疾病诊断,利用纳米微粒制成特殊药物或新型抗体进行局部定向治疗等。
2纳米技术在生物医学方面的应用
2.1测量和控制生物大分子
纳米技术与扫描探针显微镜(Scanningprobemicroscopes,SPMs)相结合,便具有了观察、制造原子水平物质结构的能力,为生物医学工作者提供了直接在亚细胞水平或分子水平研究生命现象的应用前景[2,3]。扫描探针显微镜是指利用扫描探针的显微技术,常用的有扫描隧道显微镜(STM,它是ScanningTunnelingMicroscope的简称)和原子力显微镜(AFM,它是AtomicForceMicroscope的简称)。STM的原理是利用电子隧道效应测量探针和样品间微小的距离,又将探针沿样品表面逐点扫描,从而得到样品表面各点高低起伏的形貌。当探针和样品表面间的距离非常近达到一个纳米时,同时在它们之间施加适当电压,在它们之间会形成隧道电流,这就是电子隧道效应。这时探针尖端便吸引材料的一个原子过来,然后将探针移至预定位置,去除电压,使原子从探针上脱落。如此反复进行,最后便按设计要求“堆砌”出各种微型构件。
Hafner(1999)等[4]报道了碳纳米管的制备方法,整个过程如同用砖头盖房子一样。隧道电流的大小和探针与表面间的距离有关,因此通过隧道电流的测量可以确定这距离的值。STM观测的样品要有导电性,用AFM就没有这种要求。AFM的原理是用探针的针尖去“触摸”样品表面,将探针沿表面逐点扫描,针尖随着样品表面的高低起伏作上下运动。用光学方法精确测量针尖这种上下运动,就可以得到样品表面高低起伏的图像。用AFM还可以测量分子间作用力的大小以及不同环境中分子间作用力大小的变化。扫描探针显微镜又是操作生物大分子的工具。用它们可以扭转或拉伸生物大分子,从而研究单个生物大分子的运动学特性。STM和AFM在平行于样品表面的方向上的空间分辨率达到0.1nm。已知样品中原子间距离的量级是0.1nm,所以STM和AFM的空间分辨率达到了分辨单个原子的水平。它的时间分辨率取决于要扫描的样品范围和像素点数目,用它们测量固定观测点时,时间分辨率达到ns甚至ps,扫描一幅面积是10nm×10nm的样品时,中等象素密度的时间分辨率约是1秒[5]。显而易见,利用STM、AFM等技术,好象使用“纳米笔”一样,可以操纵原子分子,在纳米石版印刷术中构造复杂的图形和结构[6]。
2.2磁性纳米粒子的应用
德国学者报道了含有75%~80%铁氧化物的超顺磁多糖纳米粒子(200~400nm)的合成和物理化学性质[7]。将它与纳米尺寸的SiO2相互作用,提高了颗粒基体的强度,并进行了纳米磁性颗粒在分子生物学中的应用研究。试验了具有一定比表面的葡聚糖和二氧化硅增强的纳米粒子。在下列方面与工业上可获得的人造磁珠作了比较:DNA自动提纯、蛋白质检测、分离和提纯、生物物料中逆转录病毒检测、内毒素清除和磁性细胞分离等。例如在DNA自动提纯中,用浓度为25mg/mL的葡聚糖nanomagR和SiO2增强的纳米粒子悬浊液,达到了≥300ng/μL的DNA型1~2KD的非专门DNA键合能力。SiO2增强的葡聚糖纳米粒子的应用使背景信号大大减弱。此外,还可以将磁性纳米粒子表面涂覆高分子材料后与蛋白质结合,作为药物载体注入到人体内,在外加磁场2125×103/π(A/m)作用下,通过纳米磁性粒子的磁性导向性,使其向病变部位移动,从而达到定向治疗的目的。例如10~50nm的Fe3O4的磁性粒子表面包裹甲基丙烯酸,尺寸约为200nm,这种亚微米级的粒子携带蛋白、抗体和药物可以用于癌症的诊断和治疗。这种局部治疗效果好,副作用少。
2.3纳米脂质体—仿生物细胞的药物载体
脂质体(Liposome)是一种定时定向药物载体,属于靶向给药系统的一种新剂型。20世纪60年代,英国BanghamAD首先发现磷脂分散在水中构成由脂质双分子层组成的内部为水相的封闭囊泡,由双分子磷脂类化合物悬浮在水中形成的具有类似生物膜结构和通透性的双分子囊泡称为脂质体。70年代初,RahmanYE等在生物膜研究的基础上,首次将脂质体作为酶和某些药物的载体。纳米脂质体作为药物载体的优点:①由磷脂双分子层包封水相囊泡构成,与各种固态微球药物载体相区别,脂质体弹性大,生物相容性好;②对所载药物有广泛的适应性,水溶性药物载入内水相,脂溶性药物溶于脂膜内,两亲性药物可插于脂膜上,而且同一个脂质体中可以同时包载亲水和疏水性药物;③磷脂本身是细胞膜成分,因此纳米脂质体注入体内无毒,生物利用度高,不引起免疫反应;④保护所载药物,防止体液对药物的稀释,及被体内酶的分解破坏。纳米粒子将使药物在人体内的传输更为方便。对脂质体表面进行修饰,譬如将对特定细胞具有选择性或亲和性的各种配体组装于脂质体表面,以达到寻靶目的。以肝脏为例,纳米粒子—药物复合物可通过被动和主动两种方式达到靶向作用:当该复合物被Kupffer细胞捕捉吞噬,使药物在肝脏内聚集,然后再逐步降解释放入血液循环,使肝脏药物浓度增加,对其它脏器的副作用减少,此为被动靶向作用;当纳米粒子尺寸足够小约100~150nm且表面覆以特殊包被后,便可以逃过Kupffer细胞的吞噬,靠其连接的单克隆抗体等物质定位于肝实质细胞发挥作用,此为主动靶向作用。用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织。
纳米粒作为输送多肽与蛋白质类药物的载体是令人鼓舞的,这不仅是因为纳米粒可改进多肽类药物的药代动力学参数,而且在一定程度上可以有效地促进肽类药物穿透生物屏障。纳米粒给药系统作为多肽与蛋白质类药物发展的工具有着十分广泛的应用前景[8]。
2.4DNA纳米技术和基因治疗
DNA纳米技术(DNAnanotechnology)是指以DNA的理化特性为原理设计的纳米技术,主要应用于分子的组装。DNA复制过程中所体现的碱基的单纯性、互补法则的恒定性和专一性、遗传信息的多样性以及构象上的特殊性和拓扑靶向性,都是纳米技术所需要的设计原理[9]。现在利用生物大分子已经可以实现纳米颗粒的自组装。将一段单链的DNA片断连接在13nm直径的纳米金颗粒A表面,再把序列互补的另一种单链DNA片断连接在纳米金颗粒B表面,将A和B混合,在DNA杂交条件下,A和B将自动连接在一起[10]。利用DNA双链的互补特性,可以实现纳米颗粒的自组装。利用生物大分子进行自组装,有一个显著的优点:可以提供高度特异性结合,这在构造复杂体系的自组装方面是必需的。
美国波士顿大学生物医学工程所Bukanov等研制的PD环(PDloop)(在双链线性DNA中复合嵌入一段寡义核苷酸序列)比PCR扩增技术具有更大的优越性;其引物无须保存于原封不动的生物活性状态,其产物具有高度序列特异性,不像PCR产物那样可能发生错配现象。PD环的诞生为线性DNA寡义核苷酸杂交技术开辟了一条崭新的道路,使从复杂DNA混合物中选择分离出特殊DNA片段成为可能,并可能应用于DNA纳米技术中[11]。
基因治疗是治疗学的巨大进步,质粒DNA插入目的细胞后,可修复遗传错误或可产生治疗因子(如多肽、蛋白质、抗原等)。利用纳米技术,可使DNA通过主动靶向作用定位于细胞;将质粒DNA浓缩至50~200nm大小且带上负电荷,有助于其对细胞核的有效入侵;而最后质粒DNA插入细胞核DNA的准确位点则取决于纳米粒子的大小和结构。此时的纳米粒子是DNA本身所组成,但有关它的物理化学特性尚有待进一步研究[12]。
2.5纳米细胞分离技术
20世纪80年代初,人们开始利用纳米微粒进行细胞分离,建立了用纳米SiO2微粒实现细胞分离的新技术。其基本原理和过程是:先制备SiO2纳米微粒,尺寸大小控制在15~20nm,结构一般为非晶态,再将其表面包覆单分子层。包覆层的选择主要依据所要分离的细胞种类而定,一般选择与所要分离细胞有亲和作用的物质作为附着层。这种SiO2纳米粒子包覆后所形成复合体的尺寸约为30nm。第二步是制取含有多种细胞的聚乙烯吡咯烷酮胶体溶液,适当控制胶体溶液浓度。第三步是将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,再通过离心技术,利用密度梯度原理,使所需要的细胞很快分离出来。此方法的优点是:①易形成密度梯度;②易实现纳米SiO2粒子与细胞的分离。这是因为纳米SiO2微粒是属于无机玻璃的范畴,性能稳定,一般不与胶体溶液和生物溶液反应,既不会沾污生物细胞,也容易把它们分开。
3发展趋势
跨入21世纪后的未来二三十年,数学、化学、物理学等基础研究的进展将扩大纳米技术的应用范围,使纳米技术与物医学的联系更加紧密,其发展趋势是:①生体相容性好的钛合金等物质将逐步开发[13],并进入临床试验阶段;②纳米技术与分子生物学技术相结合,将有助于揭示生物大分子各级结构与功能的破译;③纳米生物技术将使药物的生产实现低成本、高效率、自动化、大规模,而药物的作用将实现器官靶向化[14];④纳米生物技术应用于分子之间的相互作用、分子复合物和分子组装的研究将在病毒结构、细胞器结构细节和自身装配机制上取得进展[15];⑤纳米生物技术将使生物活性分子诊断、检测技术向微型、微观、微量、微创或无创、快速、实时、遥距、动态、功能性和智能化的方向发展。
有人预测,二三十年后,医生使用纳米技术只需检测几个细胞就能判断出病人是否患上癌症或判断胎儿是否有遗传缺陷。妇女怀孕8个星期左右,在血液中开始出现非常少量的胎儿细胞,用纳米微粒很容易将这些胎儿细胞分离出来进行诊断。在人工器官外面涂上纳米粒子可预防移植后的排异反应。使用纳米技术的新型诊断仪器只需检测少量血液,就能通过其中的蛋白质和DNA诊断出各种疾病。
参考文献
[1]KeahlerT.Nanotechnology:basicconceptsanddefinitions[J].ClinChem,1994,40(9):1797.
[2]PermiakovNK,AnanianMA,SorokovoiVI,etal.Scanningprobemicroscopyandmedicobiologicalnanotechnology:historyandprospects[J].ArklPatol,1998,60(5):9.
[3]HeinzWF,HohJF.Spatiallyresolvedforcespectroscopyofbiologicalsurfacesusingatomicforcemicroscopy[J].TrendsBiotechnol,1999,17:143.
[4]HafnerJH,CheungCL,LieberCM.Directgrowthofsinglewalledcarbonnanotubescanningprobemicroscopytips[J].JAmChemSoc,1999,121:9750.
[5]唐孝威,胡钧.测量和控制生物大分子[J].世界科技研究与发展,2000,22(4):16.
[6]PinerRD,ZhuJ,XuF,etal.Dippennanolithography[J].Science,1999,283:661.
[7]许孙曲,徐小妹编译.用新型二氧化硅增强的磁性纳米粒子作分子生物学研究的工具[J].国外医学生物医学工程分册,2000,23(1):62.
[8]CarinoGP,MathiowitzE.Advanceddrugdelivery[J].Reviews,1999,35:249.
[9]SeemanNC.DNAnanotechnology:novelDNAconstructions[J].AnnuRevBiopgysBiomolstruct,1998,27:225.
[10]MirkinCA,LetsingerRL,MucicRC,etal.ADNAbasedmethodforrationallyassemblingnanoparticlesintomaeroscopicmaterials[J].Nature,1996,382(6592):607.
[11]BukanovNO,DemidovVV,NielsenPE,etal.PDloop:acomplexofduplexDNAwithanoligonucleotide[J].ProcNatclSciUSA,1998,95(10):5516.
[12]SchofieldJP,CaskeyCT.Nonviralapproachestogenetherapy[J].BrMerdBul,1995,51(1):56.
[13]刘玲编译.钛和贱金属合金金属陶瓷冠的适合性[J].国外医学生物医学工程分册,2000,23(4):252.
[14]魏红,李永国.纳米技术在生物医学工程领域的应用—研究现状和发展趋势[J].国外医学生物医学工程分册,1999,22(6),340.
纳米技术的性质篇5
[论文摘要]科技的发展,使我们对物质的结构研究的越来越透彻。纳米技术便由此产生了,主要对纳米材料和纳米涂料的应用加以阐述。
一、纳米的发展历史
纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。
1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。
二、纳米技术在防腐中的应用
纳米涂料必须满足两个条件:一是有一相尺寸在1~100nm;二是因为纳米相的存在而使涂料的性能有明显提高或具有新功能。纳米涂料性能改善主要包括:第一、施工性能的改善。利用纳米粒子粒径对流变性的影响,如纳米SiO2用于建筑涂料,可防止涂料的流挂;第二、耐候性的改善。利用纳米粒子对紫外线的吸收性,如利用纳米TiO2、SiO2可制得耐候性建筑外墙涂料、汽车面漆等;第三、力学性能的改善。利用纳米粒子与树脂之间强大的界面结合力,可提高涂层的强度、硬度、耐磨性、耐刮伤性等。纳米功能性涂料主要有抗菌涂料、界面涂料、隐身涂料、静电屏蔽涂料、隔热涂料、大气净化涂料、电绝缘涂料、磁性涂料等。
纳米技术的应用为涂料工业的发展开辟了一条新途径,目前用于涂料的纳米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于纳米粒子的比表面大、表面自由能高,粒子之间极易团聚,纳米粒子的这种特性决定了纳米涂料不可能象颜料、添料与基料通过简单的混配得到。同时纳米粒子种类很多,性能各异,不是每一种纳米粒子和每一粒径范围的纳米粒子制得的涂料都能达到所期望的性能和功能,需要经过大量的实验研究工作,才有可能得到真正的纳米涂料。
纳米涂料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒纳米防锈颜料,性能不错,甚至已可与铬酸盐相以前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽比。我国防锈涂料业也蓬勃发展,也可以生产纳米漆。
我国自主生产的产品目前已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用。
三、纳米材料在涂料中应用展前景预测
据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。
由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。
在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。
纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。
纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。使用寿命达15年以上。颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。其纳米抗冻涂料,除具备纳米型涂料各种优良性之外,可在10℃到25℃之内正常施工。突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量。
四、结语
由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。
参考文献:
[1]桥本和仁等[J].现代化工.1996(8):25~28.
纳米技术的性质篇6
“欢迎来太原采访,我希望通过你们的报道,在宣传好我们企业的同时,能引起国家有关部门对我们的科研成果,特别是应用于耐火材料的纳米技术给予重视与支持!”太原高科耐火材料有限公司(简称太原高科)董事长高树森与记者一见面就这样说。这位长期从事耐火材料研究开发工作的科研领军人和企业家,在记者的眼里更象是一位儒雅的长者,谈起纳米技术的发展,他向记者娓娓道来。
高树森告诉记者:纳米科技和纳米材料是20世纪80年代刚刚诞生并正在崛起的高新技术。它是研究包括从亚微米、纳米到团簇尺寸(从几个原子到几百个原子以上尺寸)之间的物质组成体系的运动相互作用以及可能的实际应用中的科学技术问题,研究内容还涉及现代科技的广阔领域。世界各国都对纳米技术给予了极大关注,美国、日本、德国等发达国家,都将纳米技术和纳米材料作为研究开发的热点课题,并得到政府的资金支持。随着科技发展进步,人类对纳米科技的研究日益广泛深入,纳米技术也已开始得到了较大范围的应用,并越来越深入地影响和改变着人们的生产、生活及思想,而对经济、政治及社会的影响,则更多地体现在各国间对纳米科技及其应用的激烈竞争上。具有特异功能的各种纳米材料越来越多,由纳米材料制备的功能性产品也不断地被开发出来,开始形成一个新型的纳米功能性产品的产业领域。在众多的纳米材料中,一些高性能的纳米陶瓷粉体材料,也就是广义上的无机非金属纳米材料的开发应用最为广泛和活跃,并已在多种产业和实际产品中得到应用,出现了高性能多功能性纳米产品,从而使得许多传统产业正在发生一场新的技术革命。随着纳米技术和纳米材料进入更多的传统产业和传统产品中,纳米科技将会给整个社会带来更大的经济和社会效益,并对人类社会的发展和进步产生深远地影响。
勇于探索创办高新技术企业及企业技术中心
高树森作为山西省耐火材料工程技术研究中心主任兼首席专家,中国节能协会玻璃窑炉专业委员会副主任委员,教授级高级工程师,耐火材料行业专家,长期从事耐火材料研究开发自主创新及使用研究工作,曾主持多项重点热工工程项目,研究开发自主创新多种耐火材料高新技术产品和特种功能性耐火材料,先后获全国科学大会奖,部级、省市级科学技术成果奖和新技术推广奖,并被授予全国冶金劳动模范,山西省、太原市劳动模范及先进科技工作者光荣称号。
太原高科耐火材料有限公司于1989年由高树森发起创立,1992年经山西省高新技术委员会认定、国家太原高新技术开发区管委会批准,成立了太原高科耐火材料有限公司。高树森和他领军的团队先后研究开发出多种耐火材料高新技术产品,并及时将研究成果转化为生产力,大大促进了企业的发展,为技术研究和自主创新提供了雄厚的资金支持,形成了生产与科研相互促进的良好局面。他们注重与国内有关院校及相关专业专家的联系与交流,以企业为主体的产、学、研体制的形成与建立,对企业的发展发挥了很好的作用。
在这之后,随着企业的不断发展,原有的生产能力远不能满足市场的需求。2005年,高树森毅然决定在太原市阳曲县投资8000余万元,建设了总占地面积为150多亩的现代化工厂和企业技术研发中心。该项目同时被列为山西省“1311”重点工程、高科技产业化项目以及山西重点引进关键科技开发项目。新工厂于2006年竣工投入生产,特种高效不定形耐火材料年生产能力为5.5万吨,新建的企业技术研究中心具有较先进完善的试验检验条件和设备仪器,技术中心还拥有一批经验丰富高素质的研究技术人员,具备研究开发自主创新和生产高新技术耐火材料产品的能力,该企业技术中心分别于2007年被山西省科技厅批准成为耐火材料行业工程技术研究中心,2009年被山西省认定为企业技术中心担负着耐火材料行业关键技术的研发和创新工作,并在自主创新方面取得了多项重大创新成果。
谈及此,高树森高兴地说:公司目前已通过了ISO9001-2000国际质量体系认证和ISO14001:2004环境管理体系认证,被山西省科委确定为“山西省科技先导型企业”、太原市科技局授予“太原市科技创新示范单位”、太原高新区“十佳技术创新项目企业”、“质量管理先进企业”等荣誉。最近,中国耐火材料行业协会授予太原高科耐火材料有限公司、山西省耐火材料工程技术研究中心“行业纳米耐火材料产业化示范基地”的称号。
通过多年的努力,高树森和他领导的企业已走出了自主研发、自主创新、自主生产科研成果的路子,由“中国制造”变为“中国创造”,而且实际效益十分突出,在这次金融危机的冲击下,该企业也受到一定程度的影响,但在高董事长的带领下克服重重困难,企业产值利润仍得到了较大增长,并且由于纳米科技、纳米材料开发成功和应用企业潜在产值利润发展空间十分广阔。实践证明,坚持科学发展观,走自主研发和自主创新的道路是太原高科发展的根本。
自主创新开辟纳米耐火材料新天地
纳米科技和纳米材料是20世纪80年代末期刚刚诞生并正在崛起的高新技术,是21世纪最富有活力的高新技术,对各个领域将产生深远影响的高新技术,其研究内容涉及现代科技的广阔领域,世界各国都对纳米技术和纳米材料给予了极大关注,具有特异功能的各种纳米材料越来越多,由纳米材料制备的功能性产品也不断地开发出来,开始形成一个新型的纳米功能产品的产业领域,从而使得许多传统产业正在发生一场新的技术革命。
记者得知,自2008年至今,在将近两年的时间里,作为技术发明人,高树森共申报了纳米复合氧化物陶瓷结合铝-尖晶石耐火浇注料及其制备方法等六项纳米耐火材料发明专利项目,其中五项发明专利均已公布,并经有关部门严格筛选后评定,被列为年度国家重点发明专利项目,还被国家知识产权局出版社编入发明人年鉴中,前两项发明专利获第九届香港国际发明博览会金奖,又获第十二届中国北京国际科技产业博览会第三届中国自主创新杰出贡献奖。2010年这些纳米发明专利在第十三届中国北京国际科技产业博览会上再一次获“中国自主创新杰出贡献奖”。
高树森向记者强调:纳米耐火材料系列发明专利的公布,是纳米技术和纳米材料在耐火材料领域中成功应用的重要标志,也是纳米技术和纳米材料与传统产业中自主研发、自主创新的重要发展方向,对钢铁等高温工业的发展和高新技术的应用作出了重要贡献。随着纳米材料和纳米技术进入更多的传统产业和传统产品中,纳米科技将会给整个社会带来更大的经济和社会效益,对人类社会产生深远影响,同时发展纳米科技是转变经济发展方式,实现可持续发展的关键。
建言献策实行“纳米中国耐材”战略计划
随着纳米技术的研究与发展,使其具有特异功能的各种纳米材料的制备成为现实与可能,作为纳米技术基础的纳米材料率先得到发展与应用,由纳米材料制备的功能性产品,也不断地开发出来,开始形成一个新型的纳米功能性产品的产业领域。在纳米耐火材料的研发和创新中,在将近两年的时间里,高树森和他的团队情系科研,矢志不渝,先后发明了纳米复合氧化物陶瓷结合铝-尖晶石、纳米Al2O3薄膜包裹的碳-铝尖晶石、纳米Al2O3、MgO复合陶瓷结合尖晶石-镁质、纳米Al2O3、MgO薄膜包裹的碳-尖晶石镁质、纳米Al2O3、SiC薄膜包裹碳的Al2O3-MA-SiC-C质、纳米SiO2、CaO复合陶瓷结合硅质耐火浇注料及其制备方法六项纳米耐火材料专利项目,并且在纳米耐火材料产业化进程中也取得了很大进展,为我国纳米耐火材料工业发展作出了重要贡献。
自主创新与研究开发是现代企业生存与发展之本。作为业界的资深人士,高树森向我们阐述了实行“纳米中国耐材”战略计划,这就是催生新型经济社会发展模式,就是要在高新技术产业化大潮中占据有利先机,需要从技术创新、产业创新、产业集群耦合3个维度,探索原创技术产业催生机制、技术创新扩散机制和高新技术与传统产业的融合机制,实现知识产业集群、原创产业集群和以新技术武装的传统产业集群之间耦合与升级,将国家纳米技术建设成为国家原创产业的试验基地,高端制造业、技术、产业创新的典范。
高树森认为:在纳米材料领域进行深入研究,对于我国经济转型、经济的平稳快速发展,特别是对于提升传统产业来说意义重大。纳米材料只有真正用于工业生产才能彰显价值,推动产业升级改造。纳米材料的产业化目前面临着如下瓶颈:一是降低纳米材料的制备成本;二是发展大规模生产纳米材料的分散技术问题;三是发展纳米材料应用技术问题,以制取分散性好、组织结构均匀并能形成纳米结构基质的新型高效纳米耐火浇注料。
【纳米技术的性质(6篇) 】相关文章:
小型超市店长工作总结范文(整理7篇 2024-10-10
护士个人工作总结范文(整理2篇) 2024-09-14
教学质量教学工作总结范文(整理7篇 2024-09-04
工作总结范文(整理10篇) 2024-08-26
幼儿园教师年度考核个人工作总结范 2024-08-14
售后客服试用期工作总结范文(整理4 2024-08-02
小学学校工作总结范文(整理5篇) 2024-06-19
逻辑学的理解(6篇) 2024-10-21
纳米技术的性质(6篇) 2024-10-21
内部审计和绩效管理结合(6篇) 2024-10-21