电气工程和集成电路的关系(6篇)

时间:2024-07-27 来源:

电气工程和集成电路的关系篇1

土木工程专业在土木与交通学院,本专业培养从事房屋建筑、地下建筑、道路、桥梁、隧道、城市轻轨等土木工程结构设计、土木工程基础设计及地基处理、土木工程结构的检测与试验、土木工程施工技术及工程管理等工作,具有扎实的理论基础和宽广的专业知识,得到土木工程师基本训练,具有较强的创新精神和研究、开发、应用能力的高级土木工程技术人才。

主要课程:一、二年级阶段,学生主要学习高等数学、计算机应用基础、工程制图、工程测量、土木工程材料、理论力学、材料力学、结构力学、流体力学、土力学等专业基础知识;三、四年级阶段,学生分成三个专业方向:建筑工程、地下结构工程、道路与桥梁工程,分别按照三个专业方向系统进行混凝土结构理论与设计、钢结构理论与设计、高层建筑结构设计、工程结构抗震防灾理论与设计、地下建筑结构、道路勘测设计、路基路面工程、桥梁工程、隧道工程、施工技术与施工组织设计、建设项目管理与工程经济等专业领域课程的学习。

二.电气工程及其自动化

电气工程及其自动化专业在电力学院,本专业培养具有扎实和宽广的基础理论和专业知识、突出的创新精神、创业意识与综合素质、较高的外语水平、以及较强的计算机操作应用和独立解决电气工程技术问题的能力,能够从事与电气工程领域有关的、宽口径的复合型高层次教学、科研和工程技术人才。

主要课程:电路、电磁场、模拟电子技术、数字电子技术、电力系统、电机学、电器学、微机原理及应用、自动控制理论、电力电子技术、信号与系统、发电厂电气部分、电力系统继电保护、高压电技术、直流输电、电气传动控制、电气测试技术、变频技术。

三.电子信息类

为满足我国电子信息产业发展需求,延续学院优良人才培养传统,迎接世界电子信息产业新一轮产业转移和全球化竞争的挑战,培养学生成为新潮电子产品或新型信息服务的首创发明者、技术管理者和行业开拓者,学院2014年实施“电子信息类”大类专业招生。此大类专业以精英人才培养为目标,着重从综合创新能力、“宽深厚”知识体系和专业精英思维三方面对学生进行培养。

专业内涵:此大类专业覆盖信息工程(通信工程与电子工程)、电子科学与技术(微电子技术)、电子科学与技术(物理电子技术)、集成电路设计与集成系统四个本科专业,第三学期按学生意愿为主转入信息工程专业和电子科学与技术专业。

深造就业:近年信息技术应用加速扩张,物联网、云计算、数字家庭等新型高端电子产业形态不断涌现,对创新人才需求十分迫切。广东省是世界的电子信息产业基地之一,总产值连续25年全中国第一,占全国产值三分之一,电子百强企业占全国四分之一,广州-深圳-东莞-珠海被称为“世界信息工业走廊”。学院毕业生面对电子信息新型与传统优势产业人才需求,长期以来供不应求,广泛就业于电子信息产业各个领域,包括中国移动、中国电信、中国联通等运营商,华为、中兴、三星等大型通信龙头企业,腾讯、网易等互联网IT企业,以及广播电视、银行、商业部门、财税、金融机关和科研机构等单位。2013届该专业总体就业率:100%。

教学优势:学院重视教学改革,强化数学和工程科学基础教育,通过全方位工程引导,注重学生个体的充分自我发展,促进形成以主动性、责任感、合作性为表征的良好价值观念,改革成果荣获第六届教学成果二等奖(“研究型大学电子信息类专业精英人才培养模式的探索与实践”)。目前学院教学资源优势突出,拥有精品课程3门(数字信号处理,射频电路与天线,数字系统设计)、特色专业2个(集成电路设计与集成系统,信息工程)、实验教学示范中心1个(电气信息及控制)、人才培养模式创新实验区1个(电子信息类专业型精英人才)、国家集成电路人才培养基地1个、国家工程实践中心1个(与TCL通讯共建)、教学团队1个以及教学名师1人。此外,学院与TCL、中兴、移动、京信通信、三星、微软研究院、超声电子、德赛、雷曼光电、广州视源电子、泰斗微电子等IT龙头企业共建企业实习。

四、会计学

电气工程和集成电路的关系篇2

关键词:电厂电气控制系统总线

0引言

随着我国电力行业的高速发展,DCS的应用也越来越广泛,但DCS主要完成的是汽轮机、锅炉的自动化过程控制,对电气部分的自动化结合较少,DCS一般未充分考虑电气设备的控制特点,所以无论是功能上还是系统结构上,与网络微机监控系统相比在开放性、先进性和经济性等方面都有较大的差距。

1电气现场总线控制系统的监控对象

电气现场总线控制系统的监控对象主要有:发电机-变压器组,其监控范围主要包括发电机、发电机励磁系统、主变压器、220kV断路器;高压厂用工作及备用电源,其监控范围主要包括高压厂用工作变压器、起动-备用变压器等;主厂房内低压厂用电源,其监控范围主要包括低压厂用工作和公用变压器、照明变压器、检修变压器和除尘变压器等主厂房的低压厂用变压器;辅助车间低压厂用电源;动力中心至电动机控制中心电源馈线;单元机组发电机和锅炉DCS控制电动机;保安电源;直流系统;交流不停电电源。

2电气现场总线控制系统的特点

2.1电气参数变化快电气模拟量一般为电流、电压、功率、频率等参数,数字量主要为开关状态、保护动作等信号,这些参数变化快,对计算机监控系统的采样速度要求高。

2.2电气设备的智能化程度高电气系统的发电机-变压器组保护、起动-备用变压器保护、自动同期装置、厂用电切换装置、励磁调节器等保护或自动装置均为微机型,6kV开关站保护为微机综合保护,380V开关站采用智能开关和微机型电动机控制器,所有的电气设备均实现了智能化,能方便地与各种计算机监控系统采用通信方式进行双向通信。另外,电气设备的控制一般均为开关量控制,控制逻辑十分简单,一般无调节或其它控制要求,电气设备的控制逻辑简单。

2.3电气设备的控制频度较低除在机组起、停过程中,部分电气设备要进行一些倒闸或切换操作外,在机组正常运行时电气设备一般不需要操作。在事故情况下,大多由继电保护或自动装置动作来切除故障或进行用电源切换。且电气设备具有良好的可控性,这是因为电气的控制对象一般均为断路器、空气开关或接触器,其操作灵活,动作可靠,与电厂其它受控设备相比,具有良好的可控性。

2.4电气设备的安装环境较好且布置相对集中电气设备大多集中布置在电气继电器室和各电气配电设备间内,设备布置相对比较集中,且安装环境极少有水汽或粉尘的污染,为控制设备就地布置提供了有利条件。

3电气现场总线控制系统配置

每台机组配置现场总线控制系统(fieldbuscontrolsys-tem,FCS),将机组电气系统的发电机-变压器组、单元机组厂用电系统和公用厂用电系统都纳入FCS,FCS作为DCS的一个子系统,在DCS操作员站实现对电气系统的监控,并通过冗余配置的通信服务器在站控层与DCS进行连接。

3.1网络结构电气FCS采用分层、分布式计算机控制系统,在系统功能上分层,设备布置上分散。网络结构为3层设备2层网方式,3层设备指监控主站层、通信子站层和间隔层,2层网指连接监控主站层与通信子站层的以太网以及连接通信子站层与间隔层的现场总线网。监控主站层由双冗余的系统主机、工程师站、网络交换机和负责与DCS及厂级监控系统(SIS)通信的双冗余通信服务器等组成,通信子站层主要由安装于电气继电器室的多串口通信服务器和安装在各配电室的通信管理机组成,间隔层设备主要包括安装在电气继电器室、6kV开关柜和380V开关柜的智能测控装置、综合保护测控装置、电动机控制器和智能仪表等。通信管理机与监控主站采用双冗余的光纤以太网连接,与间隔层设备可根据设备情况采用Profibus,LON,CAN,工业以太网或其它现场总线进行连接,其主要功能除完成对各综合智能测控单元的数据进行管理外,还完成实时数据的加工和分布式数据库的管理工作。公用厂用电系统的站控层以太网独立组网,通过通信网关分别与机组自动化系统以太网连接,共用单元机组的工程师站,并通过软、硬件闭锁手段只能接受一台机组控制系统的操作指令。

3.2数据采集对发电机-变压器组、高压厂用变压器及起动-备用变压器,除少量模拟量信号、高压侧断路器、隔离开关、接地开关位置信号、控制回路断线及允许远方操作信号、发电机-变压器组及起动-备用变压器所有控制量信号采用硬接线直接与DCS连接外,其它监测信号均通过专设的测控装置接入FCS,再以通信方式送DCS。电气专用装置如发电机-变压器组及起动-备用变压器保护、电压自动调整装置(AVR)、同期装置、故障录波、厂用电快速切换、柴油机、直流系统以及交(直)流不停电电源(UPS)系统等均设有通信接口,通过多串口通信服务器接入FCS。

电厂厂用电源分高压厂用工作及备用电源、主厂房低压厂用电源系统和辅助车间低压厂用电源系统,主厂房低压厂用电源包括低压厂用工作和公用变压器、照明变压器、检修变压器和除尘变压器及其380V配电装置等,辅助车间低压厂用电源包括输煤系统、工业废水处理站、翻车机、循环水系统、补给水系统变压器及其380V配电装置等。为与本工程水、煤、灰辅助系统集中控制的思路相适应,辅助车间厂用电源系统均纳入机组DCS监控。针对热控水、煤、灰单独设置控制点的方案,辅助车间380V电源系统也可纳入相应可编程序控制器(PLC)控制。

为使控制系统接线更加简单,对主厂房重要厂用电源如6kV厂用电系统及锅炉、汽轮机、主厂房公用系统等,采用硬接线和现场总线相结合的采集方式,即重要DI信号(如断路器合闸位置、断路器跳闸位置、允许操作、故障)和DO信号(如断路器合闸指令、断路器跳闸指令等)保留硬接线,回路其它所有信息均通过现场总线以通信方式送入FCS及DCS;而对机组不重要厂用电源如检修、照明、电除尘及辅助车间厂用电系统等,取消厂用电电源系统全部的硬接线,完全采用通信方式进行监视和控制。

对单元机组电动机,由于与机组热工系统联系紧密,采用硬接线和现场总线相结合的采集方式,同时,要保留和监控逻辑有关的重要信息,采用硬接线的方式,接入DCS中进行监控。FCS采集的供电气系统分析管理的信息如各保护整定值、故障时电流和电压波形等数据,送入FCS的工程师站进行分析处理,不送入DCS,但可以通过独立的通信接口送入SIS和管理信息系统(MIS)。

4结束语

随着电厂自动化水平的不断提高,电气系统采用计算机控制已成为当前设计的主流,控制方式也从单纯的DCS监控逐步向具备故障分析、信息管理、设备管理、自动抄表、仿真培训等高等级运行管理功能的方向发展,由此又推动了现场总线技术在电厂电气控制系统中的应用。将FCS应用到火力发电厂控制过程有利于提高火力发电厂电气系统的自动化水平,节约工程投资,值得大力推广应用。

参考文献:

[1]李虞文.火电厂计算机控制技术与系统[M].北京:水利水电出版社.2003.

电气工程和集成电路的关系篇3

关键词:输电线路;三维设计;数字化设计平台;GIS;计算机网络环境文献标识码:A

中图分类号:TM75文章编号:1009-2374(2016)17-0028-02DOI:10.13535/ki.11-4406/n.2016.17.012

目前输电线路三维数字化设计正处于起步阶段,随着电网电压等级的提高和商业化运营的大规模实施,设计研究工作又面临着新挑战。电力设计行业已经存在多个输电线路设计管理软件,从三维数字化的整体目标来看,信息化工作依然存在着如下问题:(1)从平台架构和规范来看,跨专业的协同设计业务没有形成统一的标准流程,导致信息孤岛的出现;(2)从现有软件功能和数据来看,重视设计功能的实现,忽视综合数据的挖掘和分析;(3)从操作便捷性和自动化来看,缺乏有效的互动机制。

1平台架构研究

1.1平台目标

1.1.1建立输电线路设计数据库。输电线路数据库包括基础地理数据、前期专题数据、电源电网数据、勘测成果数据、三维模型数据、线路成果数据和工程项目数据。根据业务流程对数据进行整合,方便设计人员完成输电线路设计,实现不同数据之间的协同操作,并形成设计成品的数字化。

1.1.2进行输电线路三维数字化设计系统建设。通过项目的建设,完整的梳理输电线路三维数字化设计信息管理流程,完成包括项目管理、基础地理数据管理、勘测成果管理、电网数据管理、线路设计成果管理、模型库管理、空间分析、优化选线、杆塔排位、铁塔与基础配置管理、辅助设计、工程成果查询统计、线路路径分析以及系统管理等多个功能模块。

1.1.3进行专业设计平台集成。对现有专业设计平台进行集成,使输电线路设计相关的专业数据资料信息化、数字化,在统一的平台上集成管理、显示、分析应用。

1.2平台架构设计

GIS技术和计算机网络技术是平台的基本技术保障,利用海量数据技术和软件框架搭建方法,实现数据库建设和系统建设。平台围绕电网设计具体业务,遵循可扩展性原则设计。平台分六个层次,分别是基础设施层、数据管理层、基础软件层、通用组件层、业务服务层、用户表现层。其中数据管理层、通用组件层、业务层和用户表现层分离,便于扩展系统。

2主要功能

根据输电线路设计流程,提供线路设计全生命周期规划、设计、分析统计、方案优化等业务相关功能。利用卫星图片、航测照片、卫星定位和全方位地形测量等手段开展线路路径优化、杆塔排位优化以及基础、杆塔、导地线、金具绝缘子的可视化设计及优化,使线路设计更加形象直观。

2.1基础配置功能

基本功能包括二维基本功能、三维基本功能和系统配置管理模块。二维基本功能包括二维图层管理、地图定位、地图量测、地图编辑、坐标转换、制图输出等功能模块;三维基本功能包括视图浏览、三维量算分析、自然特效、要素标绘、空间分析、截屏和录像等功能;系统配置管理模块为用户管理、权限管理、角色管理、日志管理、系统管理等方面的内容。

2.2数据管理

数据管理主要包括勘测、线路、结构等不同专业在工程实施的过程中的设计成果资料的管理,作为基础数据的矢量数据、栅格数据、地形图和影像数据的管理,还包括对输电线路三维业务设计过程中的杆塔模型、基础模型、金具绝缘子串等通用模型库的管理。

2.3三维业务设计

三维业务设计部分包括工程项目管理、路径分析、电气设计和结构设计四大业务模块。实现了线路勘测、路径优化、杆塔定位、断面校验、交叉跨越校核等功能,完成二维立体选线与平断面导出功能,完成线路工程设计各阶段相关功能,完成各阶段内的地理信息资料信息化、路径选择优化、选线成果分析统计、杆塔规划及分类统计、杆塔绝缘子串及其他金具统计、杆塔接地装置分析统计、经济指标估算等功能。

路径(选线)设计实现基于二、三维联动的输电线路选线,主要进行线路路径选择和外业调绘资料录入,输出结果是路径图、平断面图、路径统计分析报告等。本功能主要包括路径方案管理、地理信息抽取、气象资料抽取、重要控制点设置、自动方案初选、调查标绘、路径编辑、路径穿越区域统计、工程量计算、技经提资单输出、路径方案及平断面图导出。

电气设计主要实现杆塔规划、优化排位、电气校验等功能。(1)利用系统数据库中建立的杆塔库、导地线库,并结合路径设计的资料成果,电气专业可以开展杆塔规划和导地线选型,提出符合工程实际塔型规划表,选定所需导地线型号、分裂数和各项参数;(2)开展优化排位,电气设计功能提供了手工排位和自动优化排位两类操作方法,两种排位方式都可将排位结果进行线路三维模拟;(3)电气设计还提供了丰富的电气计算和电气参数校验功能,如导地线张力弧垂表、导地线张力架线弧垂系数表等,这些数字化成果将通过系统直接为结构专业提资。

结构设计主要实现杆塔结构生成、基础结构生成、塔基地形图、塔基断面图等功能。结构设计功能集成TTA等主流杆塔结构计算软件,开展杆塔结构计算和设计,并将计算结果自动转换为三维杆塔结构。结合电气资料、地形地貌资料开展基础设计,并生成塔基地形图和塔基断面图。结构设计向电气专业提供数字化结构设计成果,供电气专业更新绘制平断面图和进行电气校验。

3主要难点

3.1多源海量数据存储、管理机制

输电线路设计需要大量的空间数据和属性数据,数据复杂多样。众多的“信息孤岛”一方面使得资源得不到充分利用、日常维护量大;另一方面难以保证数据的一致性、准确性和实时性。由于缺乏有效的数据存储管理机制,因此结合现有的数据库技术、GIS技术和开发平台等,构建一种相对高效的数据存储管理机制,具有相当重要的意义。

3.2基于工况的三维间隙校验方法研究

平台电气校验的过程中,在三维场景下,根据线路工况、气象环境、导线型号及相关属性等参数,真实模拟线路的弧垂以及导地线风偏,分别对“导线对地”“导线对地物”“跳线对塔窗”“导地线间”“极限档距”及“安全间隙”进行校验。

3.3虚拟现实与数字化仿真应用

平台在三维场景中真实再现工程线路的架设情况,包括线路沿线的地形地貌信息、铁塔、基础、绝缘子串等模型情况。通过线路巡检、飞行漫游等功能,直观地对整个工程线路及线路沿线周边的环境进行浏览查看。应用电磁环境展示功能,展示输电线路对环境敏感源的电磁环境参数衰减曲线,直观反映电磁环境指标是否达标。

4创新点

4.1电磁环境展示

导线周围的电磁环境和输电线路的电压等级、回路数、相序等条件息息相关,在进行输电线路设计时,需要考虑输电线路附近的电磁环境对周围居民建筑物的影响。研究了电磁环境在三维数字化设计平台中的计算原理方法,结合“输电线路电磁环境综合计算程序”对系统采用的电磁环境计算方法进行了验证,并分析了当输电线路任意点的磁场在三维中的应用场景以及当输电线路周围有建筑物时如何进行电磁环境的校验及预警。

4.2三维杆塔模型自动创建方法研究

根据TTA文件参数自动生成三维模型成为本项目的关键技术之一。TTA文件是自立式铁塔内力分析软件的计算成果文件,文件内记录了铁塔上所有的节点,及节点之间的连接关系、对称关系等,还记录了铁塔的受力情况及铁塔上杆件的一些基本信息。将TTA文件内的这些信息读取出来并进行组织,建立起铁塔的三维模型,是输电线路三维建模与设计的关键一步。

为此,本系统开发了TTA解析的功能,系统读取TTA铁塔设计软件的计算成果文件以及塔材文件(DATA.INI),自动创建铁塔三维模型,可以直观地观察解析结果,并将解析结果进行保存与导出,导出后的杆塔三维模型可以直接使用。

4.3交互式高低腿配置方法

根据实际工作中高低腿配置流程,利用塔基地形测量数据、铁塔高低腿数据和基础模型库数据,按照设计院高低腿配置规则计算边坡保护距,自动化或人工干预相交互保证了高低腿配置功能的准确性和高效性。

5效益分析

5.1经济效益

在平台的应用过程中,通过对相关业务工作效率与决策科学性的提升,不仅能够显著降低输电线路设计及运行成本,还能有效增加输电线路运营收益。主要表现在两个方面:(1)人工成本的降低,通过平台所集成的丰富数据资源及所具备的高效辅助决策能力,可显著减少线路、结构、勘测等专业的现场工作量,并节约同等工作量下的人员配置,减少差旅和薪酬支出;(2)提高输电线路设计效率所带来的收益增加,通过平台辅助规划设计等板块功能应用,能有效缩短输电工程从规划布点到建成投运的实施周期。

5.2社会效益

(1)社会资源节约方面,通过平台应用,进一步提输电线路建设环节中决策科学性,减少资源占用。在站址和线路路径方案优选方面,可有效减少线路设施对农田、林地等社会资源的不合理占用,促进输电线路与经济社会的协调发展;(2)社会发展保障方面,利用平台对输电线路运行环境及运行工况进行密切跟踪,快速科学应对输电线路突发事件;(3)产业集聚区方面,基于地理空间布局,可以直观查看全省当前输电线路分部情况,科学指导全省电网建设,为政府部门研判集聚区经济增长形势、制定相关政策提供科学依据。

参考文献

[1]熊晓光.输电线路三维数字化设计平台建设与应用研究[J].电力勘测设计,2013,(3).

[2]陆小艺.输电线路选线三维GIS技术及工程应用[J].广西电力,2012,35(2).

[3]景钦刚.基于GIS的三维输电线路规划设计系统的研究[J].电力建设,2008,14(6).

[4]郄鑫,齐立忠,胡君慧.三维数字化设计技术在输变电工程中的应用[J].电网与清洁能源,2012,(11).

电气工程和集成电路的关系篇4

关键词:电气系统、铁路客车、新技术

中图分类号:C35文献标识码:A

一、客车电气系统的可靠性

客车电气系统的可靠性在于电路设计、元器件质量、电路安装质量、系统绝缘质量以及电器连接点紧固质量等。电路设计中在考虑原理实现的同时考虑必要的保护电路;电气元器件在安装前要经过老化等必要试验的筛选;电线路安装质量以及系统绝缘质量在客车新造和各种修程中通过各种测试手段来保证。在运用中,尽管电线路因鼠害和振动等情况有造成断路或短路现象,但是,发生故障较多的还是在电路连接点紧固质量方面,它不仅与负载、工作质量有关,而且,与列车运行品质有关。

二、维修检测技术的适应性

客车电气控制系统维修技术的适应性在于检车乘务人员以及定检维修人员的综合技能和检测检修技术装备手段。铁路总公司要求提速干线客车维修人员尤其是负责发电车、客电的检车乘务人员要具备高级技工技能的人员担当,现在距这一要求差距较大;目前,定检维修的检测检修装备有了较大改进,而随车检测检修手段相对落后,制约了维修工作的开展。

三、工作质量负载的变化

在电气系统中电压变化幅度较小,基本恒定。线路及负载等效电阻随负载增加或减小而发生变化,进而引起电气系统电流的变化。这种变化应在系统技术条件范围之内,超出范围则属异常。由于系统中电流的变化使通过电路连接点的热量变化,尤其是在主回路中使连接螺钉及压板有松动趋势

四、机械振动的影响

客车电气系统在列车运行中始终处在机械振动的工况之中,尽管客车转向架在抗振方面有了很大改进,但振动仍然是存在的,车辆本身结构、轨道线路状况、机车的牵引与制动等对车辆的振动影响是很大的,所以,由于机械振动引起的电气系统连接点松动的可能性是较大的。在电气故障统计中这类问题是大量的。机械振动可造成元器件的损坏,使用电器停止工作,尤其是电线路断路、短路或连接点松动使用电器处于非正常工作状态,这就给列车安全运行带来严重的隐患

五、原理分析

负载的变化和机械振动都会造成电气系统故障直至引发火灾,在电气系统中电路的电阻主要是取决于负载的大小,与负载相比线路本身的电阻可以忽略不计。电路连接点相当于线路的一个点,所以,连接点的电阻也是忽略不计的,此时,主回路的电流由负载的大小决定,即I(主)=U/R(负载),控制回路的电流由元器件和线路等效电阻的大小决定,即I(控)=U/R(等效)。在正常工况下,系统匹配,线路连接点的温度表象是在允许值范围内的。当线路连接点松动时,工况就发生了大的变化,连接点接触面减小,趋于点接触,连接点原先电阻可以忽略不计的条件失去,电阻值急剧增加,R=ρ?l/S,其中,ρ―――连接点材料电阻率;l―――材料长度;S―――接触面积。这样,使得松动的接触点热量增加,Q=0.24I2Rt,其中I―――回路中电流;R―――连接点电阻;t―――通过电流时间。由于连接点的热量与电阻值呈线性关系,电阻的增大必将引起热量的增加,直至造成连接点过热、破坏绝缘,使电路短路引发火情,危及安全

六、电路热点检测原理

信息采集―A/D转换―数据分析―判定标准―反馈―结论。信息采集是利用信号采集器对电路连接点温度按照一定的时间段进行原始温度信息采集,采集的信号可以是绝对值也可以是相对值,统一为一种值进行采集;A/D模数转换是将采集的温度信号转换为数字信号,利用微处理机进行快速分析处理,尤其是采用相对值法时更显示其优越性;数据分析是对数值进行排列,分析变化趋热,找出突变点;判定标准是根据行业或专业技术标准制定阶梯档线值作为判定标准,与排列数值进行比较;反馈是将排列数值逐一与判定标准的阶梯档线进行快速比较,为检测结论提供依据;结论是检测的结果,对达到不同阶梯档线的连接点采取不同的处理方法。

七、仪器检测及结果

检测的结果有3种可能,一是正常情况,检测工作往下进行;二是故障临界情况,未发生故障,但是,从检测值看已渐离正常值,应加强观察和处理;三是故障情况,马上停机处理。根据这一原理制造的电路热点检测仪器已经面市,它不仅能够定性,而且能定量描述电气系统运行状态。它以温升作为电路连接点状态的检测指标,以常温、室温为基准零点,根据连接点相对温度(Δt)升高量,用绿、黄、红3色灯条快速显示连接点的实际状态。(a)绿灯区点亮,Δt=0~10℃,连接点正常,无热点。(b)黄灯区点亮,Δt=10℃~15℃,应引起注意,定期复查;Δt=15℃~20℃,表明潜在热点,要加强观察,方便时安排检修。(c)红灯区点亮,Δt>20℃,必须马上安排处理。

八、效果分析

针对电路连接点故障热特性,随车检测装备已配备了红外数显测温仪,对电气系统检测提供了较好的手段。但是,这种点的间断采集方式使检测效率受到影响,若一个连接点的检测时间是3s,一个电气柜则需要十几分钟才能完全,而且,测点误差也是存在的。电路热点检测仪可以对电路连接点的检测实现数据连续采集,作到快速采样响应,每秒30个采样点,灵敏度达到0.1℃,采用相对值判定,并且将数据采集、分析、判定和结果显示融为一体,是当前较理想的电路热点检测手段。现在,在部分集中供电空调客车上配备试用,效果很好。

九、建议

(1)强化车辆检修员工的技术培训。要熟悉和掌握车辆技术业务知识,在车上配备电气线路图纸及必备资料。同时,进行检测技术的培训,利用检测手段对电气系统工况进行有效检测,使员工素质与客车技术的发展相适应。

(2)加大对车辆检车人员的装备投入。一般来讲,“三分手艺,七分工具”,而我们现在配备的工具还基本上是老三样,极不适应工作的需要。要对车辆检车人员配备多功能电工钳、多功能测电表、袖珍测振仪、电路热点普查仪、故障检测仪等必要的仪器工具装备。

(3)检车作业规范化。检车作业的工作标准已比较完善,重在落实。按照时间、质量、程序的要求,

参考文献:

1、傅求峰.铁路客车电气火险预防措旋的探讨[J].上海铁道科技,2011,02:41-42+87.

2、铁道车辆.中国期刊方阵双效期刊,2013

3、傅茂海.车辆工程.北京:中国铁道出版社,2008

电气工程和集成电路的关系篇5

[关键词]电气自动化设计理念融合应用发展前景

中图分类号:TM76文献标识码:A文章编号:1009-914X(2015)33-0352-01

1前言

随着科技的进步和电气行业的快速发展,电气的自动化设计成为电气工程建设发展的必然结果,满足了市场上不断增长的电气应用需求,为电气行业注入了科学理念,提高了电气工程的工作效率和工作质量,是电气工程与时俱进,与新进科技融合的重要标志。

2电气自动化设计理念

2.1集中化设计

由于电气工程中的处理器要对整个电力系统进行集中处理,使得处理器的工作压力变大,影响到处理器的工作效率和工作质量。而在工作人员进行电气监控时,因为需要进行监控的数量太多,导致主机工作迟缓,负担加重,相对应的电缆数量也就增多了,直接是提高了投资成本,间接影响到企业的经济收益。另外,由于长距离电缆的增多,影响到电力系统的稳定性和准确性,造成系统超负荷现象,容易因为不定因素引发安全故障,所以在电力工程中运用电气自动化技术实现集中化监控设计,能够有效减轻同一处理器和主机的压力,提高电力系统的工作效率,加快电力工程的前进步伐。

2.2远程控制

电力工程是一项范围广、涉及面多的项目工程,具有电缆数量多、距离远、难以集中控制的特点,给电力企业的综合管理工作造成一定难度。在电力工程中应用电气自动化设计,使用远程化设计理念,缩短人机距离,减少电缆的使用量,达到节约成本,灵活组态的目的,还能够提高电力系统的安全性与准确性,稳定供电系统,提高企业对电力的管理能力。

3电气自动化在电气工程中的融合运用

3.1电气自动化与继电保护装置的融合

电气工程中的继电保护装置,主要是用于当供电系统突然发生断电或其他意外情况的故障时,立刻向供电总站发出警报,并自动切断线路,保障线路连接设备完整,以免发生重大安全事故的一种保护装置。这里的继电保护装置出现故障,主要有两种表现形式:拒动和误动。拒动故障主要是指当电气系统发生故障或者出现其他意外情况时,继电保护装置无法及时进行断线保护,没有起到对线路的保护作用;误动故障是指当系统正常运转,线路也没有发生故障时,继电保护装置自身发生错误的保护或者传递有误差的信息,使电气系统造成紊乱。当出现这两种继电保护故障时,就可以在继电保护装置中融合电气自动化技术,形成自动化继电保护,对运行中的线路进行实时监测,有效控制电力系统中的参数,掌握用电情况,并与总站相连接,实行远程控制,能够及时发现问题,以防出现线路误跳现象,给用电用户造成不便。继电保护装置自动化除了能够对供电系统进行检测外,也可以对系统内部线路(包括一般线路和特殊线路)和内部装置的情况进行监查,一旦发现异常,自动装置就会自动切断线路,做出具体的保护措施。

3.2变电站的综合自动化

电气自动化技术与变电站的综合系统相融合,使其变成了一个全方位的综合性计算机监控系统,能够将电气的自动化装置、电气信号管理、继电保护装置和电气测量装置等多方面内容进行统一、重组、优化,适时更新技术,使其符合时代潮流和用户需求;另一方面,变电站综合自动化系统可以对变电站站内的通信、线路、设备以及计算机技术利用先进科技(大多为先进的电子金属)进行全面监控,发挥其适时监测、电力测量和控制通信的功能,促进变电站综合系统向集成化、智能化发展,也使得变电站的电力供应更加安全、稳定。

3.3电气自动化与发电厂的分散测控系统的融合

将电气自动化技术与发电厂的分散测控系统相结合,对各种电力设备运行中的相关参数适时报备,随时检查各设备的运行状态是否良好,实现发电厂对生产阶段的控制和检测,从根源上保证产品质量,维持电力工程的正常运行。

4电气自动化在电气工程中的发展空间

一直以来,电力工程发展进步的最佳状态就是能够使电气系统安全、稳定的运行,要做好这一工作,最重要的就是将电气自动化与电力工程相融合,在先进技术的指导下将电气系统中的全部功能更好的发挥出来。电气自动化弥补了传统电气装置的不足和缺陷,能够利用计算机的数字化技术保证工作任务的准确性,对线路的故障或异常情况也能在第一时间发出警示信号,并做出具体应对措施,保证电网的安全、高效运行。另外,电气自动化对监测方式也进行了调整和改进,自动化装置使员工不必时时盯着电力系统的运行状况,也不必轮流值班或在发生故障时通过人工发出报警信号,使用自动化监测大大节省了人力资源,减少了工作人员的工作量,提高了工作效率。

凡事总有两面性,电气自动化虽然在辅助电气系统顺利工作,保障线路正常运行有着技术上的优势,但是当前的电气自动化技术发展不完善,还处于初级发展阶段,在电力工程中的应用也不成熟,难免会出现一些技术上照顾不到的意外状况或电力故障问题,如比较典型的继电保护装置出现保护故障、无法满足电力变电站的任务要求、现代电网无法负荷、电气自动化计算机的内外电压高要求提高投资成本、工作质量不能达到人工服务标准等多种问题,使得电气自动化技术在现阶段不能保证速度与质量的同步提升,影响到电力工程的工作效率和工作质量。现阶段,电气行业还需要在电气自动化技术中的专业技术、主要功效、成本缩减、技术管理、安全防护等多方面加大研究力度,实行进一步探索,完善电力装置,充分发挥电子技术的科学性、准确性、安全性和高效性,保证电力工程安全稳定运行。

5结语

在飞速发展的年代,科学技术和计算机知识已经渗透进人们的日常生活中,电力工程作为一项物质保障基础也融合了知识密集型技术,实现了电气自动化技术,在继电保护装置、变电站综合自动化系统、发电厂分散测控系统等多方面投入应用,减少了电力工程的工作量,在极大程度上释放了人力资源,保障了高工作效率和高准确度。但是当前的电气自动化技术尚不完善,还需要各专业研究人员进行深入探索,克服自动化技术的不足,为电力工程的顺利运行提供更好的服务,满足市场上的电力需求,推动电气行业的发展进步。

参考文献

[1]石峰.电气自动化在电气工程中的融合运用[J].硅谷,2014(6):88.

电气工程和集成电路的关系篇6

【关键词】建筑电气工程;自动化设计;实现分析

1、电气工程及其自动化概述

电气工程及其自动化采用的理论基础往往是电磁感应定律、基尔霍夫电路定律等等,并且关系着一系列的技术和科学问题,比如电能的产生、运输以及使用等等过程;电气工程及其自动化涉及到很多的领域,比如电力电子技术、计算机技术、电机电器技术信息与网络控制技术等等,因此电气工程及其自动化综合了很多方面,是一个复杂的行业,主要特点是结合了强弱电、机电、软硬件等等。

2、电气工程及其自动化的发展历史

全空型电力电子开关:电子电力器件从某种程度上来说,经历了四代,第一代是晶闸管,并且一直到今天还在使用;第二代是全控制式器件,是在交流变频技术之后出现的;第三代是复合型电力电子器件,也就是IGBT和MGT;功率集成电路,也就是PIC,是第四代的电力电子器件。

从原来的低频发展为目前的高频电路:变换器电路的更新换代,是在电力电子器件的发展下所催动的;但是直流变换器用在普通晶闸管的时候,主要是相互控制整列,而交流变频传动采用的变频器方式则是交流到直流再到交流。而第二代电力电子器件取代了原来的变换器时,就增多了很多的采用。PMW变换器在发展过程中,逐渐的显露出了很多的缺陷,因此,高频电路就逐渐取代了原来的低频电路。

投入使用的通用变频器:在通用变频器投入使用之前,还经历了第一代功能型U/F控制类型,高功能型第二代U/F型和高动态性能的变频器。

3、建筑中的电气工程及其自动化技术运用

楼宇自动化:楼宇自动化控制一般采用的是计算机集散控制,也就是利用计算机对楼宇进行集中管理,分散控制。直接数字控制器往往被大部分用作分散控制器,然后运用上位计算机来管理和监控主机屏幕;曲线、动画、数据库、各种专用的控件以及文本和脚本等等都可以作为手段来进行使用;楼宇自动化是一个非常复杂的系统,包括很多的方面,比如通风与空调监控系统、照明监控系统、电力供应监控系统、消防监控系统、供水与排水监控系统以及电梯运行监控系统以及综合保安系统和结构化布线系统等等。设计楼宇自动化系统主要是分析、分类和处理判断建筑内各项机电设备的信息,根据这些处理的信息,找出最好的优化控制手段,从而有效的集中管理和监控各项系统设备的运行,保证各个子系统设备运行状态是有序和高效的,让工作的环境变得更加的舒适和安全;从而有效的保证各系统造价是最少的,并且在能源和日常管理费方面也可以大大的节省,保证系统能够将其作用充分的发挥出来,这样就可以将现代化智能楼宇的管理和服务层次有效的提升。

电气安全:随着社会的发展,电力能源在人类生活中的应用范围越来越广,电力设备和电力设施已经成为人们生活和工作中非常重要的一部分。电气绝缘:要想保证人身的安全和电气设备的正常运行,首先就应该保证配电线路和电气设备的绝缘;要想测试电气的绝缘性能,可以采用衡量绝缘电阻、抗压强度、漏电流等参数的方法。安全距离:电气安全距离指的是人体和电力设备之间的安全可靠距离;地面与带电体之间、身体与带电体之间、带电体与带电体之间等等都需要保持一定的距离。安全载流量:导体的安全载流量指的是通过导体内部的电流量是符合相关的要求和标准的。通过导体的电流量如果超过了安全的范围,就会出现一些事情,比如损坏绝缘,甚至是出现一些火灾等等。

建筑设备自动化系统:楼宇自动化系统是集中监控建筑物内的空调设备、冷热源设备、防火防盗设备等等,保证这些设备的正常运行,从而让建筑物内的环境变得更加的舒适和安全。

4、建筑中电气工程及其自动化技术的完善

建立自动化的系统架构:在建筑中设计电气工程及其自动化的时候,就应该建立自动化的系统架构,包括电气工程及其自动化技术需要具备的功能、需要处理的问题等等,在自动化的系统架构中应该设置一些管理模块,根据实际需要,将相应的功能设置在管理模块中;根据这个自动化的系统架构还可以作为后续制度建设的依据,并且在设置相关人员的时候,也可以充分的发挥指导作用;常见的模块有数据管理、运行监控、人员管理、电力设施养护以及电气工程管理等等。

合理选用自动化设备:电气工程自动化技术的基础就是自动化设备,因此自动化设备选用的合理与否将会直接影响到整个自动化技术的科学性和效率等等。一般情况下,可以电气工程及其自动化技术设备分为三个类别,第一类别是电磁开关、自动化和变压器设备等,属于经营设备;第二类设备主要是一些传输设备、监测设备和网络传输设备等,具体指的是电子信号转换系统和信息收集传递装置等等,通过第二类设备收集的信息可以将系统的实时动态有效的反映出来;第三类设备主要是对系统的加工设备进行控制。

环境监控:环境监控主要是对电气工程设备的运行环境进行检测,还应该实时监控温度、湿度、电压和功率等等,并且建立相应的警戒线值,从而对外部环境做出正确的判断,如果外部链接发生比较大变化的时候,控制中心就会及时的接收到这些变化的数据,从而及时的发出相关的指令。

5、结语

随着时代的发展和科技的进步,建筑电气工程及其自动化的应用范围越来越广;医院因为其本身的特点,对电气工程及其自动化有着更高的要求,所以在设计的时候,应该采取高标准和高规格,保证电气工程及其自动化能够将设计的功能充分的发挥出来。本文简要概述了电气工程及其自动化,然后重点分析了建筑电气工程自动化设计及实现,希望可以提供一些有价值的参考意见。

参考文献

[1]黄明阳.建筑中的电气工程及其自动化技术研究[J].城市建设理论研究,2012,2(15):23-27.

【电气工程和集成电路的关系(6篇) 】相关文章:

小学学校工作总结范文(整理5篇) 2024-06-19

季度工作总结范文(整理4篇) 2024-06-11

转正工作总结范文(整理10篇) 2024-05-21

数学教研组教学总结范文(整理10篇) 2024-05-20

幼儿园大班的工作总结范文(整理4篇 2024-05-15

班主任家访工作总结范文(整理4篇) 2024-05-15

慢病工作总结范文(整理7篇) 2024-04-28

网络服务器在企业中的应用(6篇) 2024-07-27

电气工程和集成电路的关系(6篇) 2024-07-27

教育心理学涉及的要素(6篇) 2024-07-27